Sensory Evaluation of Lighting: A Methodological Pilot

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 2,88 MB, PDF-dokument

Current standards for light environments are based on technical requirements, e.g. luminance, uniformity, and illuminance, and do not necessarily describe all parts of the light experience to ensure visual comfort from a user perspective. Including experience-related requirements would most likely yield better lighting comfort. To do that, new methods for specifying and measuring the user experience are needed. This paper describes a pilot study exploring a new method to analytically assess perceived lighting properties by using a trained human panel and thus make human assessments more objective. The methodology is built on established sensory methods, where the human senses are used in product assessments, traditionally applied within e.g. the food, packaging, and car industries. An analytical panel comprising eight persons fulfilling specific selection criteria were recruited and trained to assess lighting products in a multi-sensory laboratory. The results show that the panelists were able to assess lighting by distinguishing between attributes and products. Significant differences were identified between the different luminaires, both in terms of sensory and physical properties, e.g. readability and glare. Conclusively, analytical sensory methods can be applied to lighting to assess luminaires in a non-subjective way. Physical and sensory attributes do not, however, always co-vary, which shows that data from physical and sensory measuring methods provide complementary information about light quality. This knowledge may in turn be applied in tools supporting the communication between different professions in lighting design and procurement to promote light environments that are both energy efficient and desirable from an end-user perspective.

OriginalsprogEngelsk
TidsskriftLEUKOS - Journal of Illuminating Engineering Society of North America
Vol/bind18
Udgave nummer1
Sider (fra-til)66-82
ISSN1550-2724
DOI
StatusUdgivet - 2022

Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk


Ingen data tilgængelig

ID: 255158045