In vitro antioxidant activities of the novel pentapeptides Ser-His-Glu-Cys-Asn and Leu-Pro-Phe-Ala-Met and the relationship between activity and peptide secondary structure

Research output: Contribution to journalJournal articleResearchpeer-review

  • Ruiwen Yang
  • Jia Wang
  • Songyi Lin
  • Haiqing Ye
  • Feng Chen

BACKGROUND: Using high-performance liquid chromatography/tandem mass spectrometry, two novel antioxidant pentapeptides [Ser-His-Glu-Cys-Asn (SHECN) and Leu-Pro-Phe-Ala-Met (LPFAM)] were identified from 1-3-kDa soybean protein hydrolysates (SPH). The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay was used to evaluate cytotoxicity in HepG2 cells. Antioxidant activity was measured using in vitro assays, including the cellular antioxidant activity assay (CAA), 2,2-diphenyl-1-picrylhydrazyl or 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) inhibition, and oxygen radical absorbance capacity (ORAC) assays. Finally, the secondary structure was determined using circular dichroism (CD).

RESULTS: The results revealed that two novel peptides were nontoxic and possessed antioxidant activity. SHECN had significantly higher antioxidant activity than LPFAM (P < 0.05). The CAA value of SHECN was 776.22 µmol QE 100 g(-1) . SHECN also showed significant DPPH inhibition (70.18 ± 4.06%) and ABTS inhibition (88.16 ± 0.76%). It had normalized ORAC values of 0.3000 ± 0.0070 µmol GE mg(-1) and 0.0900 ± 0.0020 µmol TE mg(-1) , respectively. The results of the CD analysis demonstrated that, compared to LPFAM, which had much lower antioxidant activity, SHECN had a high β-sheet content and reduced α-helix content.

CONCLUSION: The results indicated that SHECN possessed high antioxidant activity. A higher β-sheet content and lower content levels of α-helix appear to be correlated with antioxidant activity. © 2016 Society of Chemical Industry.

Original languageEnglish
JournalJournal of the Science of Food and Agriculture
Volume97
Issue number6
Pages (from-to)1945-1952
Number of pages8
ISSN0022-5142
DOIs
Publication statusPublished - 2017

ID: 170141705