Cleavage of Disulfide Bonds in Cystine by UV-B Illumination Mediated by Tryptophan or Tyrosine as Photosensitizers

Research output: Contribution to journalJournal articleResearchpeer-review

Photolytic cleavage of disulfide bonds in proteins by UV light will influence their structure and functionality. The present study aimed to investigate the efficiency of disulfide cleavage by UV-B light in a system without a protein backbone consisting of combinations of cystine (a disulfide) and tryptophan (Trp) or tyrosine (Tyr) under anaerobic and aerobic conditions and to identify oxidation products formed by UV-B light. Cystine was reduced to cysteine (Cys) almost with a 1:1 stoichiometry by photoexcited Trp for anaerobic equimolar aqueous solutions (each 200 μM; pH 7.0), while photoexcited Tyr provided lower concentrations of Cys. The calculation of apparent quantum yields allowed for a comparison between the efficiency of reactions and showed that formation of Cys from disulfide cleavage of cystine was more efficient by photoexcited Trp than by photoexcited Tyr and of cystine alone and that Trp was more sensitive to photodegradation than Tyr and cystine under both aerobic and anaerobic conditions. Increasing the ratio between cystine and Trp to a 1:2 ratio did not increase the efficiency of free thiol formation but caused a more efficient photodegradation of Trp. The free thiol formed from disulfide cleavage of cystine was further oxidized to other unidentified compounds. Trp oxidation products (3-hydroxykynurenine (3-OH-Kyn) and tryptamine) were only identified in minor concentrations following light exposure of cystine and Trp in 1:1 and 1:2 ratios under both aerobic and anaerobic conditions, indicating further photodegradation to unidentified compounds. 3,4-Dihydroxyphenylalanine (DOPA) was formed from the oxidation of Tyr in the illuminated samples of cystine and Tyr in a 1:1 ratio under both aerobic and anaerobic conditions.

Original languageEnglish
JournalJournal of Agricultural and Food Chemistry
Issue number25
Pages (from-to)6900-6909
Number of pages10
Publication statusPublished - 2020

    Research areas

  • disulfide bond cleavage, photo-oxidation, quantum yield, UV irradiation

ID: 244527091