Plant sterol metabolism. Δ7-Sterol-C5-Desaturase (STE1/DWARF7), Δ5,7-Sterol-Δ7-Reductase (DWARF5) and Δ24-Sterol-Δ24-Reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Plant sterol metabolism. Δ7-Sterol-C5-Desaturase (STE1/DWARF7), Δ5,7-Sterol-Δ7-Reductase (DWARF5) and Δ24-Sterol-Δ24-Reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L. / Silvestro, Daniele; Andersen, Tonni Grube; Schaller, Hubert; Jensen, Poul Erik.

In: P L o S One, Vol. 8, No. 2, e56429, 2013.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Silvestro, D, Andersen, TG, Schaller, H & Jensen, PE 2013, 'Plant sterol metabolism. Δ7-Sterol-C5-Desaturase (STE1/DWARF7), Δ5,7-Sterol-Δ7-Reductase (DWARF5) and Δ24-Sterol-Δ24-Reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L', P L o S One, vol. 8, no. 2, e56429. https://doi.org/10.1371/journal.pone.0056429

APA

Silvestro, D., Andersen, T. G., Schaller, H., & Jensen, P. E. (2013). Plant sterol metabolism. Δ7-Sterol-C5-Desaturase (STE1/DWARF7), Δ5,7-Sterol-Δ7-Reductase (DWARF5) and Δ24-Sterol-Δ24-Reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L. P L o S One, 8(2), [e56429]. https://doi.org/10.1371/journal.pone.0056429

Vancouver

Silvestro D, Andersen TG, Schaller H, Jensen PE. Plant sterol metabolism. Δ7-Sterol-C5-Desaturase (STE1/DWARF7), Δ5,7-Sterol-Δ7-Reductase (DWARF5) and Δ24-Sterol-Δ24-Reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L. P L o S One. 2013;8(2). e56429. https://doi.org/10.1371/journal.pone.0056429

Author

Silvestro, Daniele ; Andersen, Tonni Grube ; Schaller, Hubert ; Jensen, Poul Erik. / Plant sterol metabolism. Δ7-Sterol-C5-Desaturase (STE1/DWARF7), Δ5,7-Sterol-Δ7-Reductase (DWARF5) and Δ24-Sterol-Δ24-Reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L. In: P L o S One. 2013 ; Vol. 8, No. 2.

Bibtex

@article{b019d3253772410d9107da5b7fe8a8a4,
title = "Plant sterol metabolism. Δ7-Sterol-C5-Desaturase (STE1/DWARF7), Δ5,7-Sterol-Δ7-Reductase (DWARF5) and Δ24-Sterol-Δ24-Reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L",
abstract = "Sterols are crucial lipid components that regulate membrane permeability and fluidity and are the precursors of bioactive steroids. The plant sterols exist as three major forms, free sterols, steryl glycosides and steryl esters. The storage of steryl esters in lipid droplets has been shown to contribute to cellular sterol homeostasis. To further document cellular aspects of sterol biosynthesis in plants, we addressed the question of the subcellular localization of the enzymes implicated in the final steps of the post-squalene biosynthetic pathway. In order to create a clear localization map of steroidogenic enzymes in cells, the coding regions of ¿(7)-sterol-C(5)-desaturase (STE1/DWARF7), ¿(24)-sterol-¿(24)-reductase (DIMINUTO/DWARF1) and ¿(5,7)-sterol-¿(7)-reductase (DWARF5) were fused to the yellow fluorescent protein (YFP) and transformed into Arabidopsis thaliana mutant lines deficient in the corresponding enzymes. All fusion proteins were found to localize in the endoplasmic reticulum in functionally complemented plants. The results show that both ¿(5,7)-sterol-¿(7)-reductase and ¿(24)-sterol-¿(24)-reductase are in addition localized to the plasma membrane, whereas ¿(7)-sterol-C(5)-desaturase was clearly detected in lipid particles. These findings raise new challenging questions about the spatial and dynamic cellular organization of sterol biosynthesis in plants.",
author = "Daniele Silvestro and Andersen, {Tonni Grube} and Hubert Schaller and Jensen, {Poul Erik}",
year = "2013",
doi = "10.1371/journal.pone.0056429",
language = "English",
volume = "8",
journal = "P L o S One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "2",

}

RIS

TY - JOUR

T1 - Plant sterol metabolism. Δ7-Sterol-C5-Desaturase (STE1/DWARF7), Δ5,7-Sterol-Δ7-Reductase (DWARF5) and Δ24-Sterol-Δ24-Reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L

AU - Silvestro, Daniele

AU - Andersen, Tonni Grube

AU - Schaller, Hubert

AU - Jensen, Poul Erik

PY - 2013

Y1 - 2013

N2 - Sterols are crucial lipid components that regulate membrane permeability and fluidity and are the precursors of bioactive steroids. The plant sterols exist as three major forms, free sterols, steryl glycosides and steryl esters. The storage of steryl esters in lipid droplets has been shown to contribute to cellular sterol homeostasis. To further document cellular aspects of sterol biosynthesis in plants, we addressed the question of the subcellular localization of the enzymes implicated in the final steps of the post-squalene biosynthetic pathway. In order to create a clear localization map of steroidogenic enzymes in cells, the coding regions of ¿(7)-sterol-C(5)-desaturase (STE1/DWARF7), ¿(24)-sterol-¿(24)-reductase (DIMINUTO/DWARF1) and ¿(5,7)-sterol-¿(7)-reductase (DWARF5) were fused to the yellow fluorescent protein (YFP) and transformed into Arabidopsis thaliana mutant lines deficient in the corresponding enzymes. All fusion proteins were found to localize in the endoplasmic reticulum in functionally complemented plants. The results show that both ¿(5,7)-sterol-¿(7)-reductase and ¿(24)-sterol-¿(24)-reductase are in addition localized to the plasma membrane, whereas ¿(7)-sterol-C(5)-desaturase was clearly detected in lipid particles. These findings raise new challenging questions about the spatial and dynamic cellular organization of sterol biosynthesis in plants.

AB - Sterols are crucial lipid components that regulate membrane permeability and fluidity and are the precursors of bioactive steroids. The plant sterols exist as three major forms, free sterols, steryl glycosides and steryl esters. The storage of steryl esters in lipid droplets has been shown to contribute to cellular sterol homeostasis. To further document cellular aspects of sterol biosynthesis in plants, we addressed the question of the subcellular localization of the enzymes implicated in the final steps of the post-squalene biosynthetic pathway. In order to create a clear localization map of steroidogenic enzymes in cells, the coding regions of ¿(7)-sterol-C(5)-desaturase (STE1/DWARF7), ¿(24)-sterol-¿(24)-reductase (DIMINUTO/DWARF1) and ¿(5,7)-sterol-¿(7)-reductase (DWARF5) were fused to the yellow fluorescent protein (YFP) and transformed into Arabidopsis thaliana mutant lines deficient in the corresponding enzymes. All fusion proteins were found to localize in the endoplasmic reticulum in functionally complemented plants. The results show that both ¿(5,7)-sterol-¿(7)-reductase and ¿(24)-sterol-¿(24)-reductase are in addition localized to the plasma membrane, whereas ¿(7)-sterol-C(5)-desaturase was clearly detected in lipid particles. These findings raise new challenging questions about the spatial and dynamic cellular organization of sterol biosynthesis in plants.

U2 - 10.1371/journal.pone.0056429

DO - 10.1371/journal.pone.0056429

M3 - Journal article

C2 - 23409184

VL - 8

JO - P L o S One

JF - P L o S One

SN - 1932-6203

IS - 2

M1 - e56429

ER -

ID: 44517590