Expression of immune regulatory genes correlate with the abundance of specific Clostridiales and Verrucomicrobia species in the equine ileum and cecum

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Expression of immune regulatory genes correlate with the abundance of specific Clostridiales and Verrucomicrobia species in the equine ileum and cecum. / Lindenberg, F.; Krych, L.; Fielden, J.; Kot, W.; Frøkiær, H.; van Galen, G.; Nielsen, D. S.; Hansen, A. K.

In: Scientific Reports, Vol. 9, No. 1, 12674, 2019.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Lindenberg, F, Krych, L, Fielden, J, Kot, W, Frøkiær, H, van Galen, G, Nielsen, DS & Hansen, AK 2019, 'Expression of immune regulatory genes correlate with the abundance of specific Clostridiales and Verrucomicrobia species in the equine ileum and cecum', Scientific Reports, vol. 9, no. 1, 12674. https://doi.org/10.1038/s41598-019-49081-5

APA

Lindenberg, F., Krych, L., Fielden, J., Kot, W., Frøkiær, H., van Galen, G., Nielsen, D. S., & Hansen, A. K. (2019). Expression of immune regulatory genes correlate with the abundance of specific Clostridiales and Verrucomicrobia species in the equine ileum and cecum. Scientific Reports, 9(1), [12674]. https://doi.org/10.1038/s41598-019-49081-5

Vancouver

Lindenberg F, Krych L, Fielden J, Kot W, Frøkiær H, van Galen G et al. Expression of immune regulatory genes correlate with the abundance of specific Clostridiales and Verrucomicrobia species in the equine ileum and cecum. Scientific Reports. 2019;9(1). 12674. https://doi.org/10.1038/s41598-019-49081-5

Author

Lindenberg, F. ; Krych, L. ; Fielden, J. ; Kot, W. ; Frøkiær, H. ; van Galen, G. ; Nielsen, D. S. ; Hansen, A. K. / Expression of immune regulatory genes correlate with the abundance of specific Clostridiales and Verrucomicrobia species in the equine ileum and cecum. In: Scientific Reports. 2019 ; Vol. 9, No. 1.

Bibtex

@article{462f2a5daa42476798929f358be39cd7,
title = "Expression of immune regulatory genes correlate with the abundance of specific Clostridiales and Verrucomicrobia species in the equine ileum and cecum",
abstract = "Billions of bacteria inhabit the gastrointestinal tract. Immune-microbial cross talk is responsible for immunological homeostasis, and symbiotic microbial species induce regulatory immunity, which helps to control the inflammation levels. In this study we aimed to identify species within the equine intestinal microbiota with the potential to induce regulatory immunity. These could be future targets for preventing or treating low-grade chronic inflammation occurring as a result of intestinal microbial changes and disruption of the homeostasis. 16S rRNA gene amplicon sequencing was performed on samples of intestinal microbial content from ileum, cecum, and colon of 24 healthy horses obtained from an abattoir. Expression of genes coding for IL-6, IL-10, IL-12, IL-17, 18 s, TNFα, TGFβ, and Foxp3 in the ileum and mesenteric lymph nodes was measured by qPCR. Intestinal microbiota composition was significantly different in the cecum and colon compared to the ileum, which contains large abundances of Proteobacteria. Especially members of the Clostridiales order correlated positively with the regulatory T-cell transcription factor Foxp3 and so did the phylum Verrucomicrobia. We conclude that Clostridiales and Verrucomicrobia have the potential to induce regulatory immunity and are possible targets for intestinal microbial interventions aiming at regulatory immunity improvement.",
author = "F. Lindenberg and L. Krych and J. Fielden and W. Kot and H. Fr{\o}ki{\ae}r and {van Galen}, G. and Nielsen, {D. S.} and Hansen, {A. K.}",
year = "2019",
doi = "10.1038/s41598-019-49081-5",
language = "English",
volume = "9",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "nature publishing group",
number = "1",

}

RIS

TY - JOUR

T1 - Expression of immune regulatory genes correlate with the abundance of specific Clostridiales and Verrucomicrobia species in the equine ileum and cecum

AU - Lindenberg, F.

AU - Krych, L.

AU - Fielden, J.

AU - Kot, W.

AU - Frøkiær, H.

AU - van Galen, G.

AU - Nielsen, D. S.

AU - Hansen, A. K.

PY - 2019

Y1 - 2019

N2 - Billions of bacteria inhabit the gastrointestinal tract. Immune-microbial cross talk is responsible for immunological homeostasis, and symbiotic microbial species induce regulatory immunity, which helps to control the inflammation levels. In this study we aimed to identify species within the equine intestinal microbiota with the potential to induce regulatory immunity. These could be future targets for preventing or treating low-grade chronic inflammation occurring as a result of intestinal microbial changes and disruption of the homeostasis. 16S rRNA gene amplicon sequencing was performed on samples of intestinal microbial content from ileum, cecum, and colon of 24 healthy horses obtained from an abattoir. Expression of genes coding for IL-6, IL-10, IL-12, IL-17, 18 s, TNFα, TGFβ, and Foxp3 in the ileum and mesenteric lymph nodes was measured by qPCR. Intestinal microbiota composition was significantly different in the cecum and colon compared to the ileum, which contains large abundances of Proteobacteria. Especially members of the Clostridiales order correlated positively with the regulatory T-cell transcription factor Foxp3 and so did the phylum Verrucomicrobia. We conclude that Clostridiales and Verrucomicrobia have the potential to induce regulatory immunity and are possible targets for intestinal microbial interventions aiming at regulatory immunity improvement.

AB - Billions of bacteria inhabit the gastrointestinal tract. Immune-microbial cross talk is responsible for immunological homeostasis, and symbiotic microbial species induce regulatory immunity, which helps to control the inflammation levels. In this study we aimed to identify species within the equine intestinal microbiota with the potential to induce regulatory immunity. These could be future targets for preventing or treating low-grade chronic inflammation occurring as a result of intestinal microbial changes and disruption of the homeostasis. 16S rRNA gene amplicon sequencing was performed on samples of intestinal microbial content from ileum, cecum, and colon of 24 healthy horses obtained from an abattoir. Expression of genes coding for IL-6, IL-10, IL-12, IL-17, 18 s, TNFα, TGFβ, and Foxp3 in the ileum and mesenteric lymph nodes was measured by qPCR. Intestinal microbiota composition was significantly different in the cecum and colon compared to the ileum, which contains large abundances of Proteobacteria. Especially members of the Clostridiales order correlated positively with the regulatory T-cell transcription factor Foxp3 and so did the phylum Verrucomicrobia. We conclude that Clostridiales and Verrucomicrobia have the potential to induce regulatory immunity and are possible targets for intestinal microbial interventions aiming at regulatory immunity improvement.

U2 - 10.1038/s41598-019-49081-5

DO - 10.1038/s41598-019-49081-5

M3 - Journal article

C2 - 31481726

AN - SCOPUS:85071775612

VL - 9

JO - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

IS - 1

M1 - 12674

ER -

ID: 227474475