Computational prediction of the 1H and 13C NMR chemical shifts for protonated alkylpyrroles: electron correlation and not solvation is the salvation

Research output: Contribution to journalJournal articleResearchpeer-review

Prediction of chemical shifts in organic cations is known to be a challenge. In this article we meet this challenge for α-protonated alkylpyrroles, a class of compounds not yet studied in this context, and present a combined experimental and theoretical study of the 13C and 1H chemical shifts in three selected pyrroles. We have investigated the importance of the solvation model, basis set and quantum chemical method with the goal of developing a simple computational protocol, which allows prediction of 13C and 1H chemical shifts with a sufficient accuracy for identification of such compounds in mixtures. We find that density functional theory with the B3LYP functional is not sufficient for reproducing all 13C chemical shifts, while already the simplest correlated wave function model, Møller-Plesset perturbation theory (MP2), leads to almost perfect agreement with the experimental data. Treatment of solvent effects generally improves somewhat the agreement with experiment and can in most cases be accomplished by a simple polarizable continuum model. The only exception is the N-H proton, which requires inclusion of explicit solvent molecules in the calculation.
Original languageEnglish
Issue number1
Pages (from-to)78-91
Number of pages14
Publication statusPublished - 2019

    Research areas

  • Faculty of Science - MP2, B3LYP, Solvent effects, density functional theory (DFT), NMR, chemical shift, protonated alkylpyrroles

ID: 209054888