
Bengt Olsson, Consignit AB/1999-10-07 1(21)

 DESIGN SPECIFICATION
Component name Version

MVACDF 2.0-6
Author Date

Bengt Olsson (translated by Mats Josefson) 1999-10-07

REVISION CONTROL
1999-12-14 /BOL Added revision control
1999-12-22 /BOL Version 2.0-5 Minor fix for memory problem in

ReadColumnHeaders when the number of columns where
very large.

2000-04-03 /BOL Improved documentation concerning Column Headers usage.
2000-07-13 /BOL Version 2.0-6 Added creation of default values for mandatory

global attributes.

CONTENTS
Contents ... 1
Introduction ... 3
NetCDF - Summary .. 3
MVACDF... 4

Global attributes .. 4
Observation (raw) data.. 5

Missing values ... 5
Observation Descriptors.. 5
Variable Descriptors .. 5
Data Matrices .. 6
Data Matrix Attributes.. 6
Valid Datatypes ... 6
Example .. 7

Programming interface.. 9
Writing files.. 9
Reading files ... 12
Miscellaneous functions .. 16

MVACDF in NetCDF terms ... 17
Global Attributes.. 17
Variable Descriptors .. 18
Column Headers ... 18
Observation (raw) Data ... 18
Observation Descriptors.. 19
Data Matrices .. 19
Data Matrix Attributes.. 20
Datatypes .. 20

Bengt Olsson, Consignit AB/1999-10-07 2(21)

component name

MVACDF
Date

1999-10-07

Compatibility with MVACDF 1.0 .. 20

Bengt Olsson, Consignit AB/1999-10-07 3(21)

component name

MVACDF
Date

1999-10-07

INTRODUCTION
Design specification for NetCDF raw-data files containing multivariate data.

This document describes a multivariate raw data format that is intended for use in the
analytical laboratory and for process analytical chemistry. Files created according to this
specification is called MVACDF files.

This document is also a design specification of the programming interface that has been
created for the NetCDF storage mechanism that should make it easier to create
NetCDF files that adheres to the following specification.

Copyright: Analytical Development, Pharmaceutical and Analytical R&D, AstraZeneca R&D, Mölndal,
AstraZeneca AB, Sweden. This specification is free to use for the implementation of the MVACDF format.
This document must be kept in its full original form when it is copied or distributed further. This
specification may not be sold by any person or enterprise. The resulting implementation of this
specification may be sold as a product or a part of a product. The name MVACDF may not be used for an
implementation that does not produce files according to this description.

NETCDF - SUMMARY
NetCDF is a format for storage of scientific data. The NetCDF format is designed for
storage of multidimensional arrays in a flexible way. With a function library that can be
used to create and manipulate NetCDF files, it is also relatively easy to use this format.
This function library has been developed by Unidata Program Center, Boulder,
Colorado, USA. The library has been implemented for a number of programming
languages and computer platforms.

The following description of the NetCDF format is available on Unidata’s web pages
http://www.unidata.ucar.edu/packages/netcdf/. These pages also give a full
description of the NetCDF format together with links to related information.

“NetCDF (network Common Data Form) is an interface for array-oriented data access
and a library that provides an implementation of the interface. The NetCDF library also
defines a machine-independent format for representing scientific data. Together, the
interface, library, and format support the creation, access, and sharing of scientific data.
The NetCDF software was developed at the Unidata Program Center in Boulder,
Colorado. The freely available source can be obtained by anonymous FTP from
ftp://ftp.unidata.ucar.edu/pub/netcdf/ or from other mirror sites.“

Bengt Olsson, Consignit AB/1999-10-07 4(21)

component name

MVACDF
Date

1999-10-07

MVACDF
MVACDF is using a subset of the functionality and the possibilities available in NetCDF
and its programming interface. MVACDF also defines a number of conventions for
information that should be contained in a MVACDF file and how this should be named.

An MVACDF file contains the following items, each item will be discussed in the
following sections.

• Global Attributes
• Variable Descriptors
• Column Headers
• Observation (raw) Data
• Observation Descriptors
• Data Matrices
• Data Matrix Attributes

 Global attributes
 A MVACDF file contains a number of global attributes that describe the content of the
file. The attributes are divided in the three groups: mandatory, system, and additional
attributes as described in the tables below.

 The mandatory and the system attributes has to be present in a MVACDF file. The
additional attributes may be useful in certain cases and should be named as specified if
present.

 Mandatory Attributes
 data_set_origin Where the data have been produced
 equipment_id What equipment has been used for the experiment
 equipment_manufacturer The manufacturer of the equipment
 equipment_type The type of equipment e.g. model number
 operator_name The operator identity
 experiment_date_time_stamp Date and time for the start of the experiment

 System Attributes
 mva_template_revision Version/revision level for MVACDF
 netcdf_file_date_time_stamp Date and time when this file was created
 netcdf_revision Version/revision level for netCDF (3.3.1)
 raw_data_mva_format What numeric format is used for the raw data (see

section ‘Valid datatypes’ for details.
 missing_value -100000, or NaN

Bengt Olsson, Consignit AB/1999-10-07 5(21)

component name

MVACDF
Date

1999-10-07

 dectime_unit Unit for decimal time (h)

 Additional Attributes
 experiment_title The experiment title
 experiment_type The experiment type
 dataset_owner The owner of the data set
 source_file_reference File name of the original file (at conversion from

another file format)
 source_file_date_time_stamp Source file creation date and time of the original

file (if any).
 source_file_format The original file format
 instrument_sw_version The instrument software version used
 instrument_os_version The instrument operating system version
 photometric_resolution The photometric resolution of the instrument
 spectral_pretreatment The method(s) for spectral pretreatment
 no_of_scans The number of scans averaged for a stored

spectrum
 detector_type The Detector type, e.g. InGaAs, PbS
 database_id A data base id for the raw data
 sample_comments Comments related to the data or the experiment

 Observation (raw) data
 Each observation consists of a vector or matrix of floating point values. Each vector or
matrix is described by an index number and the date and time for the observation. Each
observation may also be given a name.

 MISSING VALUES
 A value is treated as missing if it is given the value of the global attribute missing_value.
A suggestion for the missing value is -100000 another suggestion is the code for IEEE
floating point code for “not a number” e.g. NaN in Matlab.

 Observation Descriptors
 It is possible to store additional information about an observation in addition to the
date/time, dectime and name of the observation. This is done by creating one or more
observation descriptors. An observation descriptor can be thought of as an additional
column of string values stored together with the observations. Each observation
descriptor must have its own unique name within the file.

 Variable Descriptors
 The variables may be labeled by individual names, then one variable descriptor is used
for each variable. For the case of sections of variables sharing the same scale and

Bengt Olsson, Consignit AB/1999-10-07 6(21)

component name

MVACDF
Date

1999-10-07

coming from the same sensor or instrument (e.g. a spectrometer), one variable
descriptor may be used to describe the entire section of variables with its scale (e.g.
wavelength scale). A variable descriptor has the following parts:

 Name The name of the sensor that was used for data collection
 Position The position of the sensor in the equipment where the measurement

took place
 zUnit The unit of the measured variable/variables
 StartColumn This descriptor describes the variables starting at StartColumn
 EndColumn This descriptor describes the variables ending at EndColumn
 StartValue The value of the x-scale at StartColumn (e.g. the first wavelength in a

spectrum)
 EndValue The value of the x-scale at EndColumn (e.g. the last wavelength in a

spectrum)
 Step The step size in the x-scale between two variables(e.g. digital

wavelength resolution)
 xUnit The unit of the x-scale including StartValue, EndValue and Step

 Column Headers
 It is possible to use Column Headers instead of (or together with) variable descriptors. A
column header is a text value which is associated with each column, i.e., one column
header for each column of observation data.

 Data Matrices
 An optional feature of MVACDF is the possibility to store additional matrices of data in
the MVACDF file. Such matrices could be used for multivariate modelling purposes etc.
The matrices must be given their own unique names.

 Data Matrix Attributes
 It is possible to give each Data Matrix its own set of user defined attributes.

 Valid Datatypes
 Observation (raw) data and Data matrices can be of one of the following datatypes.

 byte 8-bit signed or unsigned integers
 short 16-bit signed integers
 long 32-bit signed integers
 float 32-bit IEEE floating-point
 double 64-bit IEEE floating point

Bengt Olsson, Consignit AB/1999-10-07 7(21)

component name

MVACDF
Date

1999-10-07

 The datatype used in a specific MVACDF-file is defined at creation of the file and can
not be changed thereafter.

 Example
 Below is an overview of the structure in a MVACDF file. The file contains data in 701
columns or variables. The first 700 variables are measured by the NIR sensor “NS-X”
and the last variable contains the results from temperature measurements with the
sensor “TEMPZ”.

 Column Headers has also been stored to give each variable (column) a name.

 The file contains one additional observation descriptor named ‘ObsDescrBatch’ which
contains batch information for each observation.

 There is also two matrices stored in the file ‘ModelMatrix1’ and ‘ModelMatrix2’.

Bengt Olsson, Consignit AB/1999-10-07 8(21)

component name

MVACDF
Date

1999-10-07

 Column Headers

 1100 1102 2484 2486 2488 2490 2492 2494 2496 2498 TEMP

 Global attributes
 operator_name=”ANAXX”
 equipment_id=”Mixer XZ-12”
 equipment_manufacturer=”Acme Inc.”
 equipment_type=”Blender”
 experiment_datetime=”1999-06-07 12:31:42”
 data_set_origin=”AstraZeneca R&D Molndal”
 .
 .
 .

 Idx Date + Time Name
 1 1999-06-07 10:10:10 QPX_A 12.2 12.1 12.2 19.4 12.0 5.4 3.2 2.2 1.6 4.8 12.7
 2 1999-06-07 10:10:10 QPX_B 12.3 11.9 12.2 19.4 12.1 5.6 3.2 2.2 1.6 4.9 12.5
 3 1999-06-07 10:10:10 QPX_C 12.2 12.1 12.7 19.3 12.1 5.7 3.2 2.3 1.7 4.8 12.7
 4 1999-06-07 10:10:10 QPX_D 12.6 12.1 12.4 19.4 12.1 5.4 3.2 2.2 1.6 4.8 12.7
 .
 .

 ObsDescrBatch
 Idx
 1 Batch7
 2 Batch8
 3 Batch3
 4 Batch2
 .
 .

 ModelMatrix1
 description=The first matrix used for the model <- User defined Data Matrix Attribute
 0.01 0.32 0.13 12.5 0.13 1.74 0.01 1.74 0.32 0.13
 0.01 1.74 12.5 1.74 0.01 0.32 0.01 0.13 1.74 0.32
 0.32 0.13 0.01 12.5 0.32 0.13 12.5 0.32 0.01 12.5
 1.74 12.5 0.32 1.74 12.5 0.01 1.74 12.5 0.13 1.74

 ModelMatrix2
 mean=12.5 <- User defined Data Matrix Attribute
 stdev=7.3 <- User defined Data Matrix Attribute
 12.5 1.74 0.01 0.32 0.01 0.13
 0.01 12.5 0.32 0.13 12.5 0.32

Var. Descr. 1
Name=”NS-X”
Position=”N1”
zUnit=”log(1/R)”
StartCol=1
EndCol=700
StartValue=1100
EndValue=2498
Step=2
xUnit=”um”

Var. Descr. 2
Name=”TEMPZ”
Position=”T1”
zUnit=”K”
StartCol=701
EndCol=701
StartValue=
EndValue=
Step=
xUnit=

Bengt Olsson, Consignit AB/1999-10-07 9(21)

component name

MVACDF
Date

1999-10-07

 PROGRAMMING INTERFACE

 A programming interface was made to create and read files in the MVACDF format.
This is implemented as an ActiveX server (COM, OLE-automation). This implementation
can be called from all programming and other tools that supports OLE-automation (e.g.
C, Delphi, Excel, Labview, Visual Basic, etc).

 The interface is written as an OLE-dll (mvacdf.dll) with Microsoft Visual C++ and ATL
3.0 and call in its turn the NetCDF library for Win32 (netcdf.dll, written by Glenn Davis
for netcdf version 3.3.1). The name of the OLE-object is “MVACDF.MVACDFFile”.

 The functions in this interface can be divided in two groups: reading and writing of files.
Below follows a description of the functions in these two groups. The output arguments
are marked with an asterisk (*) in front of the argument name. The data types are given
in parentesis after the argument name.

 t[x] 8bit characters (x = string length, which is given a value between 5 and

255 at file creation time).
 t[] 8bit characters (“unlimited” length)
 n 32bit integer
 n[7] Array of 7 32bit numbers, year, month, day, hour, minutes, seconds and

1/10000 seconds.
 f 64bit floating point number (IEEE)
 d[] Array of raw data or matrix data. See section ’Valid datatypes’ for a

description.

 Writing files
 Create(filename, nofCol, nofVarDescr, datatype, stringlen,
nofRowsPerObs)

 Creates a new file with a number of columns and column descriptors.

 filename(t[255]) The name of the file to be created. The file can not overwrite an

existing file with te same name.
 nofCol (n) The total number of columns in the raw data matrix.
 nofVarDescr (n) The number of variable descriptors.
 datatype (t[32]) The datatype of observation (raw) data and data in additional

matrices. See section ’Valid datatypes’ for a description of valid
types.

 stringlen (n) Maximum length of text string (valid values: 4<stringlen<256)
 nofRowsPerObs
(n)

 The number of rows for each observation, i.e., nofRowsPerObs=1
equals a vector with nofCol columns. If nofRowsPerObs>1 the

Bengt Olsson, Consignit AB/1999-10-07 10(21)

component name

MVACDF
Date

1999-10-07

observations are matrices with nofRowsPerObs rows and nofCol
columns.

 WriteGlobalAttr(data_set_origin, equipment_id,
equipment_manufacturer, equipment_type, operator_name,
experiment_datetime)

 Writes the global attributes that are mandatory for MVACDF files.

 data_set_origin (t[]) Where the data have been produced
 equipment_id (t[]) What equipment has been used for the experiment
 equipment_manufacturer (t[]) The manufacturer of the equipment
 equipment_type (t[]) The type of equipment e.g. model number
 operator_name (t[]) The operator identity
 experiment_datetime (t[]) Date and time for the start of the experiment

 InquireAddGlobalAttr(*attr[])

 Returns a list with attribute names for the “Additional Global Attributes” that are
recomended in the MVACDF-standard.

 WriteAddGlobalAttr(name, value)

 Writes the additional file attributes and other undefined attributes that are needed. The
name might contain characters A-Z, a-z, 0-9 and _ but should not begin with an _.

 name (t[120]) Additional attribute name.
 value (t[]) The value of the attribute

 WriteVariableDescription(idx, sensorName, sensorPosition, zUnit,
startCol, endCol, startVal, endVal, step, xUnit)

 Fills in the information for a variable descriptor indexed by idx.

 idx (n) The number of the variable descriptor to be written (starts at,

n=1).
 sensorName (t[x]) The name of the sensor that was used for data collection
 sensorPosition (t[x]) The position of the sensor in the equipment where the

measurement took place
 zUnit (t[x]) The unit of the measured variable/variables
 startCol (n) This descriptor describes the variables starting at StartCol.
 endCol (n) This descriptor describes the variables ending at EndCol
 startVal (f) The value of the x-scale at StartCol (e.g. the first wavelength in

a spectrum)

Bengt Olsson, Consignit AB/1999-10-07 11(21)

component name

MVACDF
Date

1999-10-07

 endVal (f) The value of the x-scale at EndCol (e.g. the last wavelength in
a spectrum)

 step (f) The step size in the x-scale between two variables(e.g. digital
wavelength resolution)

 xUnit (t[x]) The unit of the x-scale including StartVal, EndVal and Step

 WriteColumnHeaders(headers[])

 Writes the column headers.

 headers(t[]) An array of headers, one for each column of observation data.

 WriteObsData(name, time, dectime, observation)

 Writes raw data for one observation to the file.

 name (t[x]) The name of the observation (object).
 time (n[7]) A vector that describes the date and time for the observation.
 dectime (f) Time in decimal hours from the start of the experiment.
 observation (d[][]) The actual data for the one observation (object) containing all

variables for all variable descriptors.

 CreateAddObsDescr(name)

 Create an additional data descriptor for each observation. The name might contain
characters A-Z, a-z, 0-9 and _ but should not begin with an _.

 name (t[120]) The name of the descriptor.

 WriteAddObsDescr(descrname, idx, value)

 Write information to an additional observation descriptor.

 descrname (t[120]) The name of the descriptor.
 idx (n) Index of the observation to describe. If idx=0 then the index of the

last observation will be used.
 value (t[x]) The describing information.

 WriteDataMatrix(name, matrixdata)

 Writes one data matrix to the file. The name might contain characters A-Z, a-z, 0-9 and
_ but should not begin with an _.

Bengt Olsson, Consignit AB/1999-10-07 12(21)

component name

MVACDF
Date

1999-10-07

 name (t[120]) The name of the matrix.
 matrixdata (d[][]) A one or two dimensional array of data contained by the matrix.

 WriteDataMatrixAttr(matrixname, attrname, attrvalue)

 Writes one Data Matrix Attribute to the file.
 matrixname (t[120]) The name of the matrix.
 attrname (t[120]) The name of the data matrix attribute.
 attrvalue (t[]) The value of the attribute.

 Close()

 Closes the file.

 Reading files

 Open(filename, *nofCol, *nofVarDescr, *nofObservations,
*datatype, *stringlen, *nofRowsPerObs)

 Opens a file for reading.

 filename (t[255]) The name of the file to be read.
 nofCol (n) The total number of columns or variables for the observations.
 nofVarDescr (n) The number of variable descriptors in the file.
 nofObservations (n) The number of observations in the file.
 datatype (t[32]) The datatype of observation (raw) data and data in additional

matrices. See section ’Valid datatypes’ for a description of
valid types.

 stringlen (n) Maximum length of text string (valid values: 4<stringlen<256)
 nofRowsPerObs (n) The number of rows for each observation, i.e.,

nofRowsPerObs=1 equals a vector with nofCol columns. If
nofRowsPerObs>1 the observations are matrices with
nofRowsPerObs rows and nofCol columns.

 ReadGlobalAttr(*data_set_origin, *equipment_id,
*equipment_manufacturer, *equipment_type, *operator_name,
*experiment_datetime)

 Reads the mandatory global attributes for a MVACDF file.

 data_set_origin (t[]) Where the data have been produced
 equipment_id (t[]) What equipment has been used for the experiment

Bengt Olsson, Consignit AB/1999-10-07 13(21)

component name

MVACDF
Date

1999-10-07

 equipment_manufacturer (t[]) The manufacturer of the equipment
 equipment_type (t[]) The type of equipment e.g. model number
 operator_name (t[]) The operator identity
 experiment_datetime (t[]) Date and time for the start of the experiment

 ReadAddGlobalAttr(name, *value)

 Reads the additional file attributes and other undefined attributes that are needed.

 name (t[120]) Additional attribute name
 value (t[]) The value of the attribute

 ReadAllGlobalAttr(*name_and_value[][])

 Reads all global file attributes including the ones that have been added with
WriteAddGlobalAttr.

 name_and_value (t[][]) Attribute names and values are returned in a two-

dimensional array of strings. Each row has two
columns (name of attribute and the value of the
attribute).

 ReadVariableDescription(idx, *Name, *Position, *zUnit,
*startCol, *endCol, *startVal, *endVal, *step, *xUnit)
 Reads a variable descriptor.

 idx (n) The number of the variable descriptor to be written (starts at,

n=1).
 sensorName (t[x]) The name of the sensor that was used for data collection
 sensorPosition (t[x]) The position of the sensor in the equipment where the

measurement took place
 zUnit (t[x]) The unit of the measured variable/variables
 startCol (n) This descriptor describes the variables starting at StartCol.
 endCol (n) This descriptor describes the variables ending at EndCol
 startVal (f) The value of the x-scale at StartCol (e.g. the first wavelength in

a spectrum)
 endVal (f) The value of the x-scale at EndCol (e.g. the last wavelength in a

spectrum)
 step (f) The step size in the x-scale between two variables(e.g. digital

wavelength resolution)
 xUnit (t[x]) The unit of the x-scale including StartVal, EndVal and Step

Bengt Olsson, Consignit AB/1999-10-07 14(21)

component name

MVACDF
Date

1999-10-07

 ReadColumnHeaders(*headers[])

 Returns a list (array of strings) of column headers. If there is no column headers in the
file then the column headers are derived from the variable descriptors. This function can
be used for client programs wanting to view the observation data in some kind of
spreadsheet format.

 NOTE: If there is no column headers in the file column headers are derived from each
variable descriptor as follows:

 1. If the startVal, endVal and step values are set for the descriptor then calculate
headers. Ex.: startVal=1100, endVal=2498 and step=2 results in headers 1100, 1102,
etc. No decimals will be used in the headers.
 2. If startVal, endVal and step are not set then the column header will be the variable
descriptor name + variable no (if more than one variable in the descriptor).
 3. If for some reason the above is not applicable then column headers will be C_1, C_2,
C_3 etc. where the number is the column no.

 ReadObsData(idx, *time, *dectime, *name, *observation)

 Reads an observation (object) -vector at index idx including its time parameters and
name.

 idx (n) The index of the observation (object) in the file
 name (t[x]) The name of the observation (object).
 time (n[7]) A vector that describes the date and time for the observation.
 dectime (f) Time in decimal hours from the start of the experiment.
 observation (d[][]) The actual data for the one observation (object) containing all

variables for all variable descriptors

 ReadPartialObsData(col1, col2, idx1, idx2, *partobsdata)

 Reads a user specified range of observation data the from the file. The is specified
using observation indexes (row numbers) and columns. This function does only work if
each observation is a vector (nofRowsPerObs=1) and not a matrix (nofRowsPerObs>1).

 col1 (n) The number of the first column that should be included.
 col2 (n) The number of the last column that should be included.
 idx1 (n) The index of the first observation (object) that should be included.
 idx2 (n) The index of the last observation (object) that should be included.
 partobsdata (d[][]) The actual data for the specified range of observations and

columns (one or two dimensional).

 ReadObservationTime (firstidx, lastidx, *times)

Bengt Olsson, Consignit AB/1999-10-07 15(21)

component name

MVACDF
Date

1999-10-07

 Reads a user specified range of observation times from the file.

 firstidx (n) The index of the first observation time that should be included.
 lastidx (n) The index of the last observation time that should be included.
 times (n[][]) A matrix with lastidx-firstidx+1 rows and 7 (year, month, day, hour,

minute, second, 1/10000 s) columns.
 ReadObservationDecTime (firstidx, lastidx, *dectimes)

 Reads a user specified range of observation dectimes from the file.

 firstidx (n) The index of the first observation time that should be included.
 lastidx (n) The index of the last observation time that should be included.
 dectimes (d[]) A vector with lastidx-firstidx+1 elements.

 InquireAddObsDescr(*descriptornames[])

 Returns a list (array of strings) of names of additional observation descriptors available
in the file.

 InquireDataMatrix(*matrixnames[])

 Returns a list (array of strings) of names of data matrices available in the file

 ReadDataMatrix(name, *matrixdata)

 Reads one data matrix from the file. The name might contain characters A-Z, a-z, 0-9
and _ but should not begin with an _.

 name (t[120]) The name of the matrix.
 matrixdata (d[][]) A one or two dimensional array of data contained by the matrix.

 ReadDataMatrixAttr(matrixname, attrname, *attrvalue)

 Reads one data matrix attribute from the file.

 matrixname (t[120]) The name of the matrix.
 attrname (t[120]) The name of the data matrix attribute.
 attrvalue (t[]) The value of the attribute.

 ReadAllDataMatrixAttr(matrixname, * name_and_value[][])

 Reads all data matrix attributes for one data matrix from the file.

Bengt Olsson, Consignit AB/1999-10-07 16(21)

component name

MVACDF
Date

1999-10-07

 matrixname (t[120]) The name of the matrix.
 name_and_value[][] Attribute names and values are returned in a two-dimensional

array of strings. Each row has two columns (name of attribute
and the value of the attribute).

 GetDataMatrixSize(matrixname, *rows, *cols)

 Returns the size of a matrix.

 matrixname (t[120]) The name of the matrix.
 rows The number of rows in the matrix.
 cols The number of columns in the matrix.

 ReadAddObsDescr(descrname, idx, *value)

 Read information from an additional observation descriptor.

 descrname (t[120]) The name of the descriptor.
 idx (n) Index of the observation to read describing information for.
 value (t[x]) The describing information.

 Close()

 Closes the file.

 Miscellaneous functions

 GetCurrentVersion(*version)

 Returns a string value representing the version of the MVACDF-dll (currently 2.0-0).

 GetFileInfo(filename, *ObsStart, *ObsEnd, *VarStart, *VarEnd,
*nofVars, *nofObs, *AddInfo)

 This function can be used by client programs that wants to derive some simple
information about the file without opening it. The function is particulary useful when
handling large amounts of MVACDF-files with spectral data (with one variable
descriptor) but it will not be useful for all applications (for example when using more
than one variable descriptor).

 filename (t[255]) The name of the file for which information is wanted.
 ObsStart (t[x]) The date and time of the first observation.

Bengt Olsson, Consignit AB/1999-10-07 17(21)

component name

MVACDF
Date

1999-10-07

 ObsEnd (t[x]) The date and time of the last observation.
 VarStart (t[x]) The wavelength (when applicable) for the first variable.
 VarEnd (t[x]) The wavelength (when applicable) for the last variable.
 nofVars (n) Number of variables (columns)
 nofObs (n) Number of observations
 AddInfo Additional information derived from the file

 ObservationCount()

 This property can be used for checking how many observations that are currently in the
file. The return value is a number.

 ReadOnly()

 This property can be set (=TRUE) before calling the Open function for opening the file in
ReadOnly-mode. This is useful when two processes is accessing the same file (one
writer and one reader).

 MVACDF IN NETCDF TERMS
 In this section the MVACDF file structure will be explained using NetCDF terms and the
‘network data format language’ (CDL) notation as defined in NetCDF. This explanation
will be useful for example when writing programs in environments where the
MVACDF.dll can not be used or when not wanting to use the MVACDF.dll for some
other reason.

 The following (all) the different MVACDF objects will be explained.

• Global Attributes
• Variable Descriptors
• Column Headers
• Observation (raw) Data
• Observation Descriptors
• Data Matrices
• Data Matrix Attributes

The different datatypes that may be used are described in a separate section. And also
there is a specification of the differences between the structure of the MVACDF 1.0 and
the MVACDF 2.0 standard.

Global Attributes

Bengt Olsson, Consignit AB/1999-10-07 18(21)

component name

MVACDF
Date

1999-10-07

Global attributes are simply the same as global attributes in NetCDF with the limitation
that only text attributes is allowed.

Variable Descriptors
A variable descriptor is described in NetCDF by 7 variables and two dimensions.

dimensions:
number_variable_descriptions = 2 ;
string_len = 200 ;

variables:
char vardescr_sensorname(number_variable_descriptions, string_len) ;
char vardescr_sensorposition(number_variable_descriptions, string_len) ;
char vardescr_zunit(number_variable_descriptions, string_len) ;
long vardescr_startcol(number_variable_descriptions) ;
long vardescr_endcol(number_variable_descriptions) ;
double vardescr_startval(number_variable_descriptions) ;
double vardescr_endval(number_variable_descriptions) ;
double vardescr_step(number_variable_descriptions) ;

Each variable corresponds to one of the arguments of the WriteVariableDescription
function.

Column Headers
The column headers are described in NetCDF by one variable and two dimensions.

dimensions:
number_data_points = 700 ; // The number of columns
string_len = 200 ;

variables:
char column_headers(number_data_points, string_len);

Observation (raw) Data
An observation is described in NetCDF by 5 variables and 4 dimensions.

dimensions:
sequence_no = UNLIMITED ; // The number of observations
number_data_points = 700 ; // The number of columns
number_time_data = 7 ; // The number of values in a time “record”
string_len = 200 ; // Max length of the name of an observation

variables:
long sequence_no(sequence_no) ;
long time_of_measurement(sequence_no, number_time_data) ;
double dectime_of_measurement(sequence_no) ;
char name_of_measurement(sequence_no, string_len) ;
double observation(sequence_no, number_data_points) ;

If the observation data is matrices (pictures?) instead of vectors (spectra?) then there
will be another dimension present in the file and the observation-variable will be
dependent of this dimension also. (When using the MVACDF.dll to create an MVACDF-

Bengt Olsson, Consignit AB/1999-10-07 19(21)

component name

MVACDF
Date

1999-10-07

file then this dimension will be present when nofRowsPerObs>1 in the call to the
Create-function.)

dimensions:
number_rows_per_data_point = 500 ; // The number of rows for each observation

variables:
double observation(sequence_no, number_data_points,
number_rows_per_data_point);

NOTE: The datatype of the observation variable is not fixed to double. See ‘Datatypes’
section below for details.

Observation Descriptors
An observation descriptor is described in NetCDF by one variable and two dimensions.
The name of the variable should be prefixed with “aod_” so that it can be recognised by
MVACDF as an observation descriptor. The handling of the prefix is taken care of
internally in the MVACDF.dll, and is thus automatically introduced when using
WriteDataMatrixAttr.

dimensions:
sequence_no = UNLIMITED ;
string_len = 200 ; // Max length of the name of an observation

variables:
char aod_BatchNo (sequence_no, string_len) ;

Data Matrices
A data matrix is described in NetCDF by one variable and one or two dimensions. The
name of the variable should be prefixed with “mtx_” so that it can be recognised by
MVACDF as a data matrix. . The handling of the prefix is taken care of internally in the
MVACDF.dll, and is thus automatically introduced when using WriteDataMatrix.

dimensions:
_40 = 40;
_65 = 65;

variables:
double mtx_ModelComponent (_40, _65) ;

or when the matrix dimension is of the same size

dimensions:
_40 = 40;

variables:
double mtx_Model (_40, _40) ;

or in the case of a vector

Bengt Olsson, Consignit AB/1999-10-07 20(21)

component name

MVACDF
Date

1999-10-07

dimensions:
_40 = 40;

variables:
double mtx_OneVector (_40) ;

NOTE: The datatype of a datamatrix is not fixed to double. See ‘Datatypes’ section
below for details.

Data Matrix Attributes
Data matrix attributes are simply the same as variable attributes in NetCDF with the
limitation that only text attributes is allowed.

Datatypes
The following data types are supported by MVACDF. The MVACDF-name of the
datatype used in one file must be stored in a global attribute called
‘raw_data_mva_format’. Mixing of datatypes in one MVACDF-file is not allowed.

MVACDF-name Length and type NetCDF-name
byte 8-bit signed or unsigned integers byte (unsigned char)
short 16-bit signed integers short
long 32-bit signed integers long
float 32-bit IEEE floating-point float
double 64-bit IEEE floating point double

Compatibility with MVACDF 1.0
The only backward compatibility issue with MVACDF 1.0 is the length of strings for
names of observations and attribute descriptors. In MVACDF 1.0 this length was fixed
to 32 characters and the dimension was called:

dimension:
_32_byte_string = 32;

In MVACDF 2.0 this dimension has been replaced with the

dimension:
string_len = 250;

dimension that has a variable length (min 5 and max 255 characters).
However the MVACDF.dll does handle this and it is possible to read MVACDF 1.0 files
with the MVACDF.dll version 2.

Bengt Olsson, Consignit AB/1999-10-07 21(21)

component name

MVACDF
Date

1999-10-07

