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Fluorescence excitation-emission matrix (EEM) measurements are useful in fields such as food

science, analytical chemistry, biochemistry and environmental science. EEMs contain information

which can be modeled using the parallel factor analysis (PARAFAC) model but the data analysis is

often complicated due to both Rayleigh and Raman scattering. There are several established ways to

deal with scattering effects. However, all of these methods have associated problems. This paper

develops a newmethod for handling scattering using interpolation in the areas affected by first- and

second-order Rayleigh and Raman scatter in such a way that the interfering signal is, at best,

removed. The suggested method is fast and requires no additional input other than specifying the

scattering region. The results of the proposed method were compared with those obtained from

common alternative approaches used for preprocessing fluorescence data before analysis with

PARAFAC and were shown to be equally good for various types of EEM data. The main advantage

of the interpolation method is in its lack of additional metaparameters, its algorithmic speed and

subsequent speed-up of PARAFACmodeling. It also allows for using EEM data in software not able

to handle missing data. Copyright # 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fluorescence spectroscopy has become a widely used

technique in many fields of physical, chemical, biological

and medical sciences[1]. In simple applications, the fluor-

escence of a fluorophore at a specific pair of excitation and

emission wavelengths is used to measure its concentration.

However, more often detailed fluorescence scans are used to

measure the combined signal from a mixture of known or

unknown fluorophores. The mixtures of fluorophores

analyzed can vary from simple laboratory mixtures [2] to

complex environmental samples [3,4]. When measuring the

fluorescence of mixtures the fluorescence properties are

usually measured by recording measurements spanning

both the excitation and emission properties of the mixture.

Collating a series of emission scans from a range of excitation
ndence to: R. Bro, Chemometrics Group, FoodTechnology,
nt of Dairy & Food Science, Royal Veterinary & Agricul-
iversity, Rolighedsvej 30, DK-1958 Frederiksberg C,

@kvl.dk
wavelengths produces an excitation-emission matrix (EEM)

of the sample, representing a detailed map of the fluor-

escence properties of the mixture.

Such EEMs contain a large amount of data, which can in

turn hinder the ability of the analyst to utilize all the

information collected. Parallel factor analysis (PARAFAC)

[2,5] is a powerful technique for analyzing the data contained

within EEMs, separating the fluorescence signal of the

underlying fluorophores mathematically, in much the same

way as physical chromatography [2]. Fluorescence PAR-

AFAC analysis has been shown to be useful with a wide

variety of mixtures of fluorophores [6,7,8], however,

fluorescence data are often plagued by scattering effects;

mainly Rayleigh and Raman scatter, which can hamper

PARAFAC modeling of the data unless care is taken. Since

PARAFAC decomposes the fluorescence signal into a series

of tri-linear structures and the scatter peaks do not behave tri-

linearly (e.g. shape and position of the scatter peaks changes

with excitation wavelength), the scatter signal causes some

mathematical difficulties in the decomposition. It is, there-

fore, beneficial to remove this effect, or at least to reduce its
Copyright # 2007 John Wiley & Sons, Ltd.
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influence as much as possible. Several ways of handling

scatter effects in relation to PARAFAC modeling have been

proposed in literature:
� D
Co
own-weighting of the scatter region (MILES) [9,10,11],
� s
pecific modeling of scatter [12],
� s
ubtraction of a standard [13],
� in
serting missing values [14],
� c
onstraints in the PARAFAC decomposition [15,16],
� in
serting zeros outside the data area [11],
� o
r plainly avoiding the part of the matrix that includes the

scatter.

At present, it seems that the best method for handling

scatter, in general, is to combine the above in the following

way:
Figure 1. A sketch of the scattering occurring in a fluor-
� S

escence EEM.
ubtract an EEM of a solvent blank if such is available to

minimize Raman scattering,
� r
eplace Rayleigh bands with a band of missing values or

alternatively use MILES (Maximum likelihood via Itera-

tive Least squares EStimation) to down-weigh these,
� f
urthermore introduce a lower triangular set of zeros in the

‘emission far below excitation’ if this area has not been

measured.

In some situations it is desired to avoid the use of missing

values for various reasons (some algorithms or visualization

tools do not handle missing data, sometimes handling

missing data is extremely slow). In those situations it is

possible to do the same; essentially, by down-weighing the

area that is supposed to be set to missing. However, if the

scatter signal is orders of magnitude larger than the relevant

data then such a weighing approach is likely to be

inadequate. By replacing huge scatter peaks with data in

accordance with the rest of the EEM, fitting of weighted or

least squares models is facilitated as well as simpler

visualization. In this paper, an approach for providing

values to replace the scatter variation is treated. The subject

of weighted fitting has already been described in the

literature [9,10,12].

Recently, a method based on replacing the scatter areas by

three-dimensional Delaunay interpolation using splines has

been proposed as a way to replace scatter peaks in emission

spectra [17]. This method appears promising for providing a

way to minimize the influence of scatter, but the method is

hampered by the need to define a number of metaparameters

whose optimal settings are not obvious.

In this paper, a simple way of treating the first-order

Rayleigh, Raman and second-order Rayleigh scatter is

proposed, involving removing and replacing the values

with interpolated values. The effect of this procedure on the

subsequent PARAFAC analysis is assessed and compared to

other approaches, although we stress that the main aim with

this method is to be able to providemore suitable values than

missing data for example for weighted least squares fitting as

well as for providing data that are simpler to visualize. The

method was evaluated on three data sets of varying

complexity and compared with modeling original data

and non-interpolated data decomposition by PARAFAC

modeling as well as with weighted regression.
pyright # 2007 John Wiley & Sons, Ltd.
2. THEORY

Rayleigh and Raman scatterings are situated diagonally in

the EEM as shown in Figure 1. The purpose of the

interpolation is to replace the data in the gray areas with

new data consistent with the data in the remaining parts of

the EEM. Two-dimensional interpolation would seem to be

an obvious choice but initial studies indicated that it was too

complex and often led to overfitting. Using one-dimensional

interpolation on individual emission spectra overcame this

problem and is described in the following.

There are several ways to implement interpolation and in

this study a shape-preserving piecewise cubic polynomial

was chosen [18,19]. This function is directly available in

MATLAB and in contrast to for example spline functions, it

seeks to preserve local minima and other features of the data

such that extreme artifacts are not introduced by the

interpolation (see Figure 2).

In Figure 3, an example is given on how this interpolation

works on a simple single emission spectrum. The inter-

polation has been implemented in the following way. A

window width is defined for first-order and, if necessary, for

second-order Rayleigh as well as for Raman scatter. These

three widths are the only user-defined parameters in the

interpolation. The specific position of the Rayleigh scatter is

defined as the diagonal where the excitation (or two times

excitation for second-order scatter) equals the emission. For

Raman, the centerline is at a constant energy shift compared

to the Rayleigh scatter.

For every emission spectrum, the measured signal in a

window, defined by the width is removed around the scatter

lines. The whole spectrum except the window is used for

interpolation and the window is replaced with the interp-

olated values. Special care is taken for two parts of the EEM.

For low-excitation wavelengths, there can be situations

where there is no emission below thewindow. In this case, an

artificial lower emission of zero is added during interp-

olation 30nmbelow thewindowof interpolation (see Figure 4).

Another special case is the second-order Rayleigh scatter.

For first-order scatter it can be safely assumed that the
J. Chemometrics (in press)
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Figure 3. Removal of scatter peaks (dotted line) from an emission spectrum. The thick line is the

interpolation based on the emission spectrum with a window corresponding to the thick line removed.

Figure 2. A simple example on how the shape-preserving interpolation avoids artifacts

compared to a cubic interpolation.

Handling of Rayleigh and Raman scatter
emission below the excitation is zero, but this is not the case

for emission beyond the second-order Rayleigh because

fluorescence may occur in this area (the upper left triangular

part of the EEM in Figure 1). In the situation where there are

no emission values at greater wavelengths than the window

to be interpolated (see e.g. upper part of dashed line in Figure

1), the missing values in the last excitation spectrum are

interpolated in order to provide end values for the emission

interpolation.

The complexity of the interpolation algorithm is insig-

nificant compared to PARAFAC. For the data used in this

paper, the interpolation never exceeded 1min of compu-

tations and as the interpolation is usually a one-shot

preprocessing prior to analyzing the data, the computation

time is not significant.
3. EXPERIMENTAL

3.1. The data
For analyzing the ability of the proposed new method, three

different fluorescent data sets were used. Two of these can be

considered standard EEM data with moderate scattering.
Copyright # 2007 John Wiley & Sons, Ltd.
One was made up of lab-prepared mixtures of four

fluorophores in varying concentrations and the other was

a set of 268 samples from a sugar factory. The two first data

sets mainly help to show that the principle works while the

last dataset III is more demanding.

3.1.1. Dataset I
Mixtures of four fluorophores were measured (L-phenyl-

alanine, L-3,4-dihydroxyphenylalanine (DOPA), 1,4-dihy-

droxybenzene and L-tryptophan). A stock solution was

made of each compound using Milli-Q water as the solvent

(pH was not adjusted). Fluorescence landscapes were

measured of 27 samples of varying concentrations of the

four fluorophores. A Perkin-Elmer LS50B fluorescence

spectrometer was used to measure fluorescence landscapes

using excitation wavelengths between 200 and 350 nm with

5 nm intervals. The emission wavelength range was 200–

750 nm. Excitation and emission monochromator slit widths

were set to 5 nm, respectively. Scan speedwas 1 500 nm/min.

There are four components in data set I and a four-

component PARAFAC model was therefore the most

suitable [20,21].
J. Chemometrics (in press)
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Figure 4. Handling of extrapolation in extreme caseswhere there is no signal below the removed scattering.

A zero is inserted below the real emissions to enable interpolation and avoid artifacts.

M. Bahram et al.
3.1.2. Dataset II
Sugar was sampled continuously every 8 h during the 3

months of operation from a sugar plant in southern

Scandinavia giving a total of 268 samples. The sugar was

sampled directly from the final unit operation (centrifuge) of

the process. The sugar was dissolved in un-buffered

water 2.25 g/15mL and the solution was measured spectro-

fluorometrically in a 10� 10mm cuvette on a PE LS50B

spectrofluorometer. Raw non-smoothed data were output

from the fluorometer. For every sample, the emission spectra

from 275 to 560 nm were measured in 0.5 nm intervals (571

wavelengths) at seven excitation wavelengths 230, 240, 255,

290, 305, 325, 340 nm. There are four distinct PARAFAC

components in data set II [7].

3.1.3. Dataset III
The fluorescence of dissolved organic matter (DOM) in

seawater samples taken from the Dogger bank in North Sea

was measured. A total of 21 samples were taken from two

vertical profiles, sampling at 5m depth intervals. Immedi-

ately after sampling the samples were filtered through a

0.2mmfilter, and then stored refrigerated until analysis in the

laboratory (within 5 days). In addition to the profile samples,

samples from zooplankton grazing experiments carried out

onboard using the same sampled water were included. The

fluorescence was measured on a Varian Eclipse fluorescence

spectrophotometer with excitation and emission slit widths

both set to 5 nm. The emission scans were from 240 to 600 nm

every 2 nm and the excitation wavelength range was 240–

450 nm every 5 nm. The fluorescence spectra were corrected

for instrument-specific effects and Raman calibrated using

the techniques described in reference [4]. However, the

procedure differed slightly in that a Milli-Q blank was not

subtracted from the data as the focus of this study is to

examine procedures to remove scatter effects from the
Copyright # 2007 John Wiley & Sons, Ltd.
fluorescence signal. Spectra were measured with the

maximum scan speed and highest PMT voltage setting.

The measurements were made as part of an internal exercise

to test the performance of the PARAFAC algorithm on

samples with a low signal-to-noise ratio, and as a result the

spectra are very noisy. Five PARAFAC components were

identified using split half and residual analysis.

3.2. Software
MATLAB (TheMathWorks, Natick, MA), version 7 was used

during the calculations. The algorithms in use were from

PLS_Toolbox ver. 3.5.3 (Eigenvector Research, Inc., WA). A

dedicated program was written for interpolation of Rayleigh

and Raman scatter area at EEM landscape which is available

at www.models.kvl.dk.
4. RESULTS AND DISCUSSION

In using the interpolation method as well as the alternative

approaches, the width of the scatter areas must be assessed.

This was done by visual inspection of the data and confirmed

subsequently by plotting parts of the preprocessed data.

Very large widths will cause some uncertainty in the

interpolated area whereas too narrow widths will bias the

solution because scatter will be included. Approximately 1.5

times of the visually assessed scatter area was removed in

order to completely remove the scatter values. For data set I

�10, �10 and �20 nm, for data set II �20, �10 and � 0 nm

(no. 2 order scatter) and for data set III �20, �12 and �0 nm

(no. 2 order scatter) were used for first-order Rayleigh,

Raman and second-order Rayleigh scatter areas, respect-

ively. For dataset I, typical interpolation results are shown in

Figure 5 showing that even with quite wide interpolation

bands the interpolation seems to provide visually sound

results.
J. Chemometrics (in press)
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Figure 6. Example of estimated emission loadings from a PARAFAC model of dataset I.

Figure 5. Sample 1 from data set I (A), first-order Rayleigh area removed (B), Raman area removed

(C), second-order Rayleigh area removed (D), all three scatter areas removed (E), landscape with

interpolated values (F).

Handling of Rayleigh and Raman scatter
The results of fitting PARAFAC to dataset I with

interpolated values are shown in terms of the estimated

emission spectra in Figure 6. In the figure, the loadings are

shown together with the result of using PARAFAC–MILES

which uses weighted least squares fitting to down-weigh the

areas corresponding to scattering. Similar results were also

obtained by setting the scatter areas as missing. Thus,
Figure 7. Loadings from PARA

Copyright # 2007 John Wiley & Sons, Ltd.
interpolation is shown to provide results similar to the

standard approaches with the only significant difference

being that the speed of analysis was two to three times faster

using interpolated data.

The second data set was originally difficult to handle

because of scattering [7]. Non-negativity was applied but

deemed not to be sufficient for avoiding problems pertaining
FAC models of dataset II.

J. Chemometrics (in press)
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Figure 8. Leftmost, an example of the raw EEM of one sample. Next, the same EEM after scattering

areas has been set to missing. The following EEM is the same but after interpolation. (Emi: Emission/nm,

Exc: Excitation/nm).

Figure 9. Comparison of emission loadings of dataset III.

M. Bahram et al.
to the scattering. An algorithm for imposing unimodality

was developed and applied as a constraint on the emission

loadings to avoid the scattering areas to influence the

estimated emission loadings. The emission loadings using

MILES and non-negativity are shown in right part of

Figure 7. A small additional peak in the emission loadings

of one of the components at 325 nm is apparent and due to

scatter effects. This was originally solved by applying

unimodality constraints but the results here show that the

use of interpolated data rather than down-weighing

(or setting scattering to missing) provides good

results and, as was the case for dataset I, also speeds up

the analysis.

The third dataset was the most difficult one to handle with

the traditional methods. In this dataset, the amount of scatter

is huge compared to the chemical signals. In Figure 8, one

example is given where it is seen that the chemical

information in the EEM is almost invisible compared to

the scatter.

Upon removing the scatter and replacing it with

interpolated values, the chemical part of the EEM is much
Copyright # 2007 John Wiley & Sons, Ltd.
more apparent. Still, the chemical information is weak (low

signal-to-noise ratio) so some uncertainty in the estimated

parameters is expected. However, both with least squares

fitting or weighted least squares fitting, the results obtained

are as good as the hitherto best results (see Figure 9where the

currently best results are the reference loadings) and

obtained much faster.
5. CONCLUSION

It has been shown that the proposed method is suitable for

extrapolating across missing values in the scatter regions in

EEMs. The approach is advantageous as it only requires the

width of the scatter signals as input, as opposed to additional

metaparameters required in alternative approaches. In

general, the results with this interpolation method are as

good as existing approaches, and have the added advantage

of speeding up the PARAFAC analysis. Furthermore, it

enables handling of EEM data in data analysis tools that for

example do not handle missing values.
J. Chemometrics (in press)
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