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Introduction

Fluorescence spectroscopy is a sensitive technique often used
for tracing the dynamics of dissolved organic matter (DOM) in
marine and freshwaters. When irradiated by UV and blue light,
a sub-fraction of the DOM pool fluoresces. The concentration
and chemical composition of DOM influences the intensity and
shape of the fluorescence spectra. In early studies, DOM fluo-
rescence was used for following the supply of terrestrial organic
matter via rivers into coastal waters (Kalle 1966). More recently,
studies have shown how different fractions of the DOM pool
can be distinguished using detailed spectral fluorescence mea-
surements (Coble et al. 1990; Coble 1996). Over the last decade,
fluorescence excitation emission matrix (EEM) spectroscopy has
been successfully applied for the identification of terrestrial,
marine, and anthropogenic components of DOM (Coble 1996;
Baker 2001; Stedmon et al. 2003; Cory and McKnight 2005).

EEMs are obtained by combining fluorescence (emission) spec-
tra measured from a series of different excitation wavelengths.
In general, DOM fluorescence has a broad excitation between
250 and 400 nm and a broad emission from 350 to 500 nm. The
location of the excitation and emission peaks varies with the
composition of DOM.

EEMs provide a wealth of information about DOM, which
in itself, can be very difficult to interpret. Until recently, the
techniques for characterizing EEM’s have generally relied on
visual identification of peaks and ratios of fluorescence in dif-
ferent regions of the spectrum (e.g., Coble 1996; McKnight et
al. 2001). Recently multivariate data analysis techniques have
been applied to the study of DOM’s complex mixture of fluo-
rescence signals (Persson and Wedborg 2001; Stedmon et al.
2003; Boehme et al. 2004; Hall et al. 2007). An excellent exam-
ple is parallel factor analysis (PARAFAC) which can decompose
the fluorescence signal into underlying individual fluorescent
phenomena (Bro 1997). This is a valuable tool for characteriz-
ing and quantifying changes in DOM fluorescence enabling
the tracing of different fractions in the natural environment
(Cory and McKnight 2005; Hall et al. 2005; Stedmon and
Markager 2005a,b; Murphy et al. 2006).

Principal Component Analysis (PCA) is another commonly
used technique for modeling and visualizing complex, multi-
variate data (Martens and Næs 1989). However, with regards
to analyzing EEMs, it has significant limitations compared
with PARAFAC. PCA provides only a qualitative characteriza-
tion of the data and the model is expressed as principal com-
ponents, which are largely abstract mathematical entities and
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contain little chemical information. In contrast, PARAFAC
provides both a quantitative and qualitative model of the data
and separates the complex signal measured into its individual
underlying fluorescent phenomena with specific excitation
and emission spectra.

The aim of the paper is to present a tutorial for the analysis
of DOM EEMs using parallel factor analysis and discuss some
aspects of the approach that need to be considered. Although
the discussion is focused on the application of the technique
to DOM fluorescence, elements are also relevant for other flu-
orescence applications. A series of papers on different aspects
of applying PARAFAC to fluorescence data have been pub-
lished (Bro 1997, 1999; Andersen and Bro 2003), however the
majority of these deal with simple mixtures or specific com-
plex analytes in very different scientific fields, such as food
science. Furthermore, these prior papers have mainly been
devoted to overall methodological descriptions, lacking the
detail needed for the reader to actually perform practical data
analysis. The complexity of DOM fluorescence warrants spe-
cial attention and indications of obvious pitfalls and gains
apparent from the last 5 y of modeling DOM fluorescence. A
critical look at the current state and development of a com-
mon approach is now required.

Multi-way data analysis—The term multi-way is used to
describe data with more than two dimensions, for example,
where data can be expressed as a box with three dimensions
(e.g., sample by “property 1” by “property 2”). Spectral fluo-
rescence data are multi-way (three-way) as the fluorescence of
a sample varies depending on the wavelength of light
absorbed (excitation) and the wavelength at which fluores-
cence is observed (emission). Combining the data from a
series of samples results in a three-way box of data (Fig. 1).

PARAFAC models three-way data using Eq. 1, fitting the
equation by minimizing the sum of squares of the residuals
(εijk).

, i = 1,.,I; j = 1,.,J; k = 1,.,K; (1)

xijk is one element of the three-way data array with dimen-
sions I, J, and K. In the analysis of EEMs, the number xijk is the
fluorescence intensity of sample i measured at emission wave-
length j and excitation wavelength k. The final term εijk repre-
sents the unexplained signal (residuals containing noise and
other un-modeled variation). The outcome of the model are the
parameters a, b, and c. Ideally, these respectively represent the
concentration, emission spectra, and excitation spectra of the
underlying fluorophores. Equation 1 is identical to that of fluo-
rescence of a mixture of fluorophores, assuming that they
behave according to Beer-Lamberts law and that there are no
interactions between them. If there are F fluorophores in the
mixture, the measured signal is the sum of the contribution
from each. The fluorescence characteristics (shape) of each fluo-
rophore do not change except for its fluorescence intensity,
which is dependent on its concentration in the respective sam-
ple. This means that the wavelength position of the fluorescence
peaks of each fluorophore do not “shift,” however, the fluores-
cence maxima of the mixture will shift depending on the rela-
tive contribution (concentration) of each of the fluorophores.

This application of Beer-Lamberts law in Eq. 1 can be further
illustrated by imagining that one EEM has been measured, with
J emission and K excitation wavelengths. This data are a table
of fluorescence intensities of size J �K, which we can refer to as
matrix X. If there is only one fluorophore present in the sam-
ple, then the EEM is the product of the emission (the vector b1)
and excitation (the vector c1) spectra. The matrix Z1 = b1c1

T is
thus the EEM of the fluorophore at unit concentration (Fig. 2).
If the concentration of this fluorophore is a1 then the EEM can
be described as x = a1Z1. It then follows that if there are more
than one fluorophore and Beer-Lamberts law is valid, then the
measured EEM is the sum of contributions of all F fluorophores
each weighted by the respective concentration (af)

X = af Zf (2)

For each element of X (xjk), this can be written

(3)

which is Eq.1 but where there is only one sample (i = 1).
As with many analytical and statistical approaches, there are

some fundamental assumptions that are necessary for the appli-
cation of PARAFAC to DOM fluorescence. One is that a change
in analyte concentration results only in a change in its fluores-
cence intensity and not in the shape of the excitation (c) and
emission (b) spectra. Alterations to the spectral fluorescence of
a fluorophore as a result of inner filter effects, changes in the
local environment of the analyte (temperature, metal concen-
trations, proximity to, etc.), or intra-molecular processes are
assumed to be minimal. Although some factors, such as inner
filter effects and effects due to variable temperature, can be
eliminated or at least minimized, it is very difficult if not impos-
sible to eliminate the effects of all factors. However, this still
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Fig. 1. Example of combining the EEMs into a three-dimensional box of
data (xijk in Eq. 1) 
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does not invalidate the use of PARAFAC to characterize DOM
fluorescence, provided the user is aware of these issues, and
careful model validation and interpretation of results is applied.

When dealing with simple mixtures, the PARAFAC compo-
nents identified are often the individual fluorophores present
in the mixture (e.g., Bro 1997). However, this is most likely
not fully possible with DOM fluorescence due to its complex
nature (Del Vecchio and Blough 2004). The components iden-
tified (if a valid and robust model is derived) represent fluo-
rescent phenomena, some of which may be individual fluo-
rophores, but may just as well be approximations of the effects
of other local processes (quenching or intra molecular charge
transfer) occurring.

Approach
This section contains a discussion of various aspects of the

procedure and recommendations based on our experience with
applying PARAFAC to DOM fluorescence. Fig. 3 shows a flow
chart outlining the overall stages in the approach. A detailed
step by step hands-on tutorial is presented in Appendix 1.

Data considerations—The first question that is often asked
while preparing to use PARAFAC is as follows: how many EEMs
are required in order to obtain a robust and adequate PARAFAC
model? There is no simple answer to this question as it is
dependent both on the nature of the data and the focus of the
study. When dealing with complex mixtures such as DOM,
where both the number and characteristics of the underlying
fluorescent signals are unknown, it is generally preferable to
model datasets with 20-100 samples and being close to or even
far above 100 samples generally makes modeling simpler. This
is largely due to the model validation process, where split half
analysis is often the most suitable to apply (see section Model
Validation). In our experience with DOM fluorescence, best
results are often obtained with datasets spanning a gradient
(e.g., mixing) or following a process (e.g., production or
removal), depending on the focus of the study. This makes
both the PARAFAC modeling and the interpretation of results
easier. For example, if a study is examining the changes in

DOM fluorescence during estuarine mixing, an ideal set of
samples would span the relevant salinity range. Arriving at a
robust model based on a dataset with, for example, 20 river
samples (freshwater) and 20 marine samples (salinity > 30) may
be difficult and is also actually basically inappropriate for the
study focus (estuarine mixing). Similarly, if studying the pro-
duction or removal of fluorescent DOM in an experiment, best
results are often arrived at when several time points are sam-
pled rather than just at the start and finish of the experiment.

A second question that arises is as follows: if we create a
model based on a wide range of samples, is it then justified to
fit this model to all future samples rather than derive and val-
idate a new model for each dataset? Although this is a tempt-
ing idea, it is also, at present, inappropriate on a global scale.
The fluorescence of DOM is dependent on a range of environ-
mental and analytical factors. How can one be sure that a new
batch of samples has a similar fluorescence to the training
data the model was derived from? In this regard, this remains
to be systematically tested. It is already clear from comparing
the results of different studies that there are certain common
components across broad geographical regions (see Stedmon
et al. 2007 sup. info.). More work is needed before a global per-
spective of the individual DOM fluorescence signals is or even
can be obtained. On a more local system scale, this approach
may be more appropriate but should only be applied after vig-
orous testing.

Preliminary data treatment—In any kind of quantitative
analysis of fluorescence data, careful calibration of the instrument

Fig. 2. Example of how the EEM of a fluorophore is the product of its
excitation and emission spectra (Z1 = b1c1

T) 

Fig. 3. A diagram summarizing the different necessary steps in the fluo-
rescence-PARAFAC analysis 

http://www.aslo.org/lomethods/free/2008/0572a1.html
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data are necessary. It is important to correct the fluorescence
measurements for instrument specific biases. These correc-
tions have both a quantitative (signal intensity) and qualita-
tive (spectral shape) aspect. Quantitative calibration is a sim-
ple issue for applications where one is working with known
fluorophores. The routine measurement of Chlorophyll a flu-
orescence as an indicator of phytoplankton biomass is an
example of this. With DOM fluorescence however, the
responsible fluorophores or phenomena are unknown, and
there is a requirement to calibrate the signal intensity to
enable comparison of measurements. To date, there are two
methods that are routinely applied. The first involves cali-
brating the fluorescence to that of quinine sulfate measured
with an excitation at 350 nm and emission at 450 nm (Coble
1993). Another approach is to use to the Raman signal from
pure water (e.g., Determann et al. 1994; Nieke et al. 1997;
Stedmon et al. 2003).

Spectral corrections take into account deviations in the
spectral output of the light source and small imperfections in
the instrument’s components ability to transmit light. How-
ever, most modern fluorescence spectrophotometers have a
built-in reference detector which is used to normalize the
measured signal to the lamp output and hereby correct for
changes in the spectral properties of the light source. This is
sometimes referred to in manuals as operating in “ratio”
mode, and the correction removes a large part of the spectral
error. Minor deviations usually remain as the light paths from
the lamp to the sample and from the lamp to the reference
detector are slightly different. Therefore it is still recom-
mended to correct for and periodically check for additional
deviations due to other factors. This can be done using a con-
centrated solution of Rhodamine B or 101 (Melhuish 1975;
Karstens and Kob 1980; Stedmon et al. in prep.).

Similar to the issues with excitation light, every fluorome-
ter is not capable of transmitting the sample emission (fluo-
rescence) from the cuvette to the detector equally efficiently at
all wavelengths. Therefore an emission correction spectrum
must be applied. This is often supplied with the instrument
and is considered to be less variable. However, this should be
monitored.

Possible inner filter effects also have to be corrected for.
They result from the absorption of the incoming excitation
light and to a lesser extent, absorption of the emission light.
For DOM, the greatest effects are seen on the excitation signal
as this is where DOM itself absorbs the most light. The emis-
sion signal is influenced to a lesser extent as the absorption by
DOM is considerably lower at these wavelengths (300-600
nm). For samples and wavelengths where DOM absorption
coefficients are above approximately 10 m–1 (corresponding to
an absorbance of 0.04 in a 1 cm cuvette), considerable reduc-
tions in the fluorescence signal are expected and observed
(Fig. 4). A simple correction can be applied and account for
the most of this effect (Mobed et al. 1996; Lakowicz 1999;
Ohno 2002).

The final step of the data pretreatment is to handle the
effects of Raman and Rayleigh scatter (Fig. 5). These scatter sig-
nals do not conform to the PARAFAC model (Eq. 1). The posi-
tion of the scatter peaks change depending on the excitation
wavelength. If they were to be modeled with PARAFAC, a new
factor would be needed for each excitation wavelength. In
addition, the scatter signal from Rayleigh is often very large,
and it is therefore most appropriate to delete it before model-
ing (Fig. 5). The region of the EEMs below the Rayleigh peak
should be set to zero. The majority of Raman effects can be
removed by subtracting the pure water spectrum from the
sample spectrum (Fig. 5). The Rayleigh removal results in a
region of the EEMs not containing any data, which can slow
the PARAFAC modeling procedure considerably as it tries to
extrapolate across the region. Recent work has shown that this
can be overcome by inserting a series of zero values in the
region of no fluorescence (excitation wavelength << emission
wavelength) (see Stedmon et al. 2003; Andersen and Bro 2003;
Rinnan and Andersen 2005).

Exploratory analysis—The initial stage of the PARAFAC
analysis consists of fitting a series of models to the data using
one, two, three components, etc. Modeling is typically done
by increasing the number of components from too few up to
the supposedly correct number of components. Part of the rea-
son for this is that if too many components are used, the
resulting models are meaningless for mathematical reasons
and hence complicated to interpret. It is important to stress
that the right number of components has to be determined in

Fig. 4. Example of inner filter effects on fluorescence. It is seen that if the
absorption coefficient is below 10 m–1 (absorbance 0.04 cm–1) inner filter
effects become negligible (<5%). Data are derived from a dilution series
of the Suwannee River Fulvic Acid (International Humic Substances Soci-
ety), starting with a stock solution of 24 mg/L. Points represent measured
data. Curve represents predicted effect using the correction equations
(e.g., Ohno 2002). 
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the end. If too few or too many components are used, all esti-
mated parameters are incorrect from a chemical point of view
because they all depend on each other during the estimation.

Typically, the complexity (number of components) is
increased until a reasonable fit has been obtained. Depending
on the data, a reasonable fit for EEM data is normally above
99% variance explained, unless the signal is very close to the

measurement noise. During these initial models, the shape of
the estimated spectra are also considered and extreme outliers
(e.g., samples that are completely different) are observed and
possibly tentatively removed. This initial analysis can be con-
sidered as a combination of outlier identification and explo-
rative data analysis. This step is crucial for later arriving at a
valid model. The term outlier is used in its broadest sense.
With regards to sample, an outlier may either be a sample that
contains some measurement error or artifact, or a correctly
measured sample, which is just very different from all the
other samples. Outlier wavelengths could, for example, be
excitation wavelengths below 240 nm, where most instru-
ment light sources perform poorly, resulting in much lower
signal to noise ratios relative to the other wavelengths.

Ideally the removal of one sample from a data set should
not influence the shape of the components derived (the model
result). If a very different result is obtained, this most likely
indicates that the sample is an outlier or that the data set is
extremely poorly sampled. The same is applicable in simple lin-
ear regression analysis. An effective tool for outlier identifica-
tion is to calculate the leverage that each sample and wave-
length has. The leverage relates to what degree a sample (or
wavelength) deviates from the average distribution for all the
data. Its value can vary between zero and one, with zero repre-
senting a sample that is identical to the average and one repre-
senting a sample that is unique and hence completely different
from the other samples. Ideally, there should not be a sample
that has a notably higher leverage than the others. A sample
with a high leverage should first be examined to ensure that
there is not analytical (measurement/calibration/correction)
error. Second, one can experiment with removing the sample
and remodeling. If this does not have any effect on the model
result then this indicates that the sample can remain in the
data set. If a notably different model is obtained and no ana-
lytical error is observed, this indicates that the sample is too
unique and that either more samples similar to it need to be
included in the data set or that it should be removed. Note that
outlying behavior is often based on model parameters (such as
leverage) and hence depends on having determined the correct
number of components. Likewise, it is not possible to deter-
mine the right number of components before outliers have
been handled. In practice, one therefore has to work iteratively
by tentatively identifying (gross) outliers and tentatively guess-
ing the approximately right number of components.

Model validation—This is the most important part of the
analysis. Essentially the goal of this step in the procedure is to
identify how many components are present and detectable in
the data and to prove the validity of these components. This is
no easy feat and at present is the focus of much research in
chemometric data analysis. There are a range of tools available to
assess the appropriate number of components, however not all
function well when applying PARAFAC to model DOM fluores-
cence. Assuming that a thorough outlier analysis has been car-
ried out, then a model can be validated using four approaches.

Fig. 5. Example of EEMs before and after removing the effects of
Rayleigh and Raman scatter. a) Original sample, b) Rayleigh scatter
removed, and c) Raman peak removed by subtracting a MilliQ blank. 
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Residual analysis. Are there systematic patterns in the resid-
uals? The residuals should be characterized by instrument
noise and contain little structure. The presence of a region
with a peak next to a trough (negative values) in the residuals
indicates that the model is not fitting well (Fig. 6a). If they are
present in many samples, this suggests that an inappropriate
number of components has been fitted. If they are only pres-
ent in one or two samples, then this would suggest that these
samples might be considered as, possibly moderate, outliers.

Examine the spectral properties of each component. Do the
components have spectral properties expected of fluo-
rophores? Excitation spectra can have one or more maxima,
but emission spectra should only exhibit one emission maxi-

mum. Additionally, the excitation and emission spectra of
organic fluorphores often overlap slightly. The spectra should
also be smooth, although this depends to a certain extent on
the spectral resolution of the fluorescence data (Fig. 5b).

Split half analysis (Harshman 1984). The data are split into
two halves (with respect to samples), and each half is modeled
independently. Then the spectral properties of the compo-
nents derived from each half are compared (bjf and ckf in Eq. 1).
If found to be identical, then the model is considered robust.
It is important to consider how the data are split to ensure that
both halves contain similar variability. If the data set is too
small and spans a large range in samples, it will be difficult to
validate using this approach.

Fig. 6. a) Example of the residuals from two different models fitted to a DOM EEM. The graph on the left has systematic deviation suggesting that the
model is inadequate. The graph on the right resembles more instrument noise with no clear peaks or troughs. b) Example of the excitation and emis-
sion spectra (loadings) of a component derived from PARAFAC modeling. The lefthand graph exhibits properties unlike a fluorophore, whereas the right-
hand side graph resembles that of an organic fluorophore. 
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Random initialization. For this a series of models are fitted
using random numbers as the initial estimates. By comparing
the fit (sum of squared error) from each model, one can ensure
that the result is in fact the least squares results and not a local
minimum.

Model refinement—The algorithms used for fitting
PARAFAC have their imperfections. This is partly due to the
algorithms themselves but also partly due to the actual
mathematical problem of fitting PARAFAC models. This has
one important repercussion on practical data analysis which
is that local minima solutions can exist. This is particularly
the case when a solution is difficult to estimate. This is often
observed indirectly by estimated concentrations or spectra
being very similar. This is a sign of a potentially difficult
problem, and in such case, it pays to re-estimate the solu-
tion several times (as mentioned in point four above) and
observe if the fit is the same every time. If not, there are
local minima and only the best-fitting estimates can be
assumed to represent a solution. It may also be indicative of
a problem that is mathematically difficult, e.g., due to very
similar spectral profiles. Increasing the number of samples
may then help.

Data interpretation—Once the model has been validated, the
fluorescence data can now be examined with respect to the
variability in each component found. As the actual identity of
the components is unknown, the fluorescence of each com-
ponent cannot be converted into a concentration. Instead the
fluorescence intensity at the maximum can be derived for
each component and has the same units as the measurements
were calibrated with, e.g., Quinine Sulfate Equivalents or
Raman units. Care must be taken when interpreting this data.
The fact that the fluorescence signal from one component (A)
is greater than that from another (B) does not equate to A hav-
ing a higher concentration than B, only higher fluorescence.
Fluorescence is not only dependent on concentrations but
also on the molar absorptivity and quantum efficiency, which
is unknown. However, relative changes and ratios between
component fluorescence can be used to illustrate the quanti-
tative and qualitative differences between samples. If certain
PARAFAC components can be identified as specific chemical
analytes, absolute calibration can be performed, for example,
through standard addition.

Perspectives
The combination of EEM fluorescence and parallel factor

analysis has proved to be a promising tool for studying DOM.
These relatively inexpensive fluorescence measurements can be
used in combination with other measurements to rapidly
quantify and characterize DOM across a range of environ-
ments. This approach also has great potential in a wide range
of other applications, such as drinking water monitoring, waste
water treatment control, and the evaluation of ballast water
exchange in ships. However, as with many new techniques, it
is not as straightforward as could be desired, and there are a

range of potential pitfalls. For the approach to persist and
become a trustworthy method, a basis for a standardized
approach was required. We hope that the discussion presented
in this paper and the tutorial in the appendix provides a suit-
able starting point for developing this approach further.
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