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Appendix 1: Tutorial

Characterizing DOM fluorescence using the
DOMFluor Toolbox for MATLAB®

In this section a brief tutorial in applying PARAFAC to
DOM fluorescence EEMs will be given with recommendations
on a suitable series of stages to follow in order to facilitate the
process based on the authors’ own experience. The tutorial is
based on MATLAB software and requires that this is installed
on your computer. The DOMFluor toolbox for MATLAB pro-
vided is in the compressed file “DOMFluorv1_4.zip” (Appen-
dix 1) and works independent of your computer’s operating
system. This is also freely downloadable from the Chemomet-
rics site at University of Copenhagen (www.models.life.ku.dk).
The toolbox contains within it the N-Way toolbox v.3.1
(Anderson and Bro, 2000) and additional functions which
facilitate running PARAFAC on DOM fluorescence data. The
DOMTFluor toolbox is written and tested in MATLAB release
2007b (v7.5) and is free software that can be used and modi-
fied under the terms of the GNU General Public License.

Within the toolbox a test dataset is provided for the tutorial,
consisting of 65 EEMs which have been spectrally corrected for
instrument biases, corrected for inner filter effects and Raman
calibrated. As a result, all of the Rayleigh scatter and most of
the Raman scatter has been removed. The remaining scatter
will be removed in the pre-processing phase. The data consists
of samples collected from a cruise on RV Gunnar Thorson in
the Kattegat and Belt Sea region (at the entrance to the Baltic
Sea) in August 2001. Three “outlier” samples were created and
are present in the data for the benefit of the tutorial.

The tutorial is composed of phases; i) data pre-processing,
ii) initial explorative data analysis, iii) modeling and model
validation, iv) interpreting results. The more thoroughly the
first two phases are carried out, the easier the latter two will
be. Part of the pre-processing on the example data set has
already been carried out (importing the data to MATLAB, spec-
tral corrections, calibrations, etc.). This is very instrument spe-
cific and therefore not appropriate for this tutorial, which
focus on the modeling of the data.

During this tutorial any statements to be written in MAT-
LAB will be written in green with Courier New font.
When writing in the Command Window, note that MATLAB
is case sensitive.

A. Setting up MATLAB to run with N-way toolbox and DOMFluor

toolbox.

1. Decide on a sensible place to locate the DOMFluor
toolbox on your computer. (This could, for example,
be C:\Program Files\MATLAB\R2007b\toolbox but
can also be elsewhere). Create a folder and name it
DOMFluor. Extract the contents of the zip file “DOM-
Fluor.zip” into the DOMFluor folder.

2. Start MATLAB. Select [File] menu then click [Set path...].
Click [Add with sub folders] and locate the DOMFluor
folder you created in Step 1 above. If the N-Way tool-
box is currently installed, remove it from the Path list
to avoid conflicts. The N-Way toolbox is included as
part of the DOMFluor toolbox. Click [Save] then
[Close]. You have now associated the DOMFluor tool-
box with MATLAB and this means that the functions
in these folders can be recognized.

3. To check that the toolboxes are correctly associated

you can type

DOMFluor

and press enter in the Command Window in MATLAB.
If “Yes” is printed to the Command Window, the tool-
box is installed. If red text appears the toolbox has not
been correctly installed. Redo Step 2. Note that if you
have other toolboxes with similarly named functions,
only the function upmost in the folder-list will work
properly.

4. Section A will have to be repeated if a new version of
MATLARB is installed.

B. Loading the tutorial data and plotting the EEMSs.
1. Type

load PARAFACexample.mat
in the Command Window. This will load the tutorial
data into the MATLAB Workspace. This consists of a

data structure called OriginalData. Try typing

OriginalData


http://www.aslo.org/lomethods/free/2008/0572a1.zip
http://www.aslo.org/lomethods/free/2008/0572a1.zip
http://www.aslo.org/lomethods/free/2008/0572a1.zip
http://www.aslo.org/lomethods/free/2008/0572a1.zip
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in the command window. This will output the following:

Command Windo

>> OriginalData

OriginalData =

Ex:
Em:

nEx: 43

nEm:
nSeunp Le
XBackup:

65x151x43 couble]

This details the data that is contained within the data
structure.

i. Ex-is a list of the excitation wavelengths mea-
sured (in nm). In this case 240 to 450 every 5
nm.

ii. Em- is a list of the emission wavelengths mea-
sured (in nm). In this case 300 to 600 every 2
nm.

iii. X- is the fluorescence data as a three dimen-
sional array (65 samples x 151 emission wave-
lengths x 43 excitation wavelengths).

iv. nSample, nEx and nEm : state the number of
samples, excitation and emission wavelengths.

v. XBackup-is a backup copy of the data and not
used in the tutorial.

2. Now we will plot the EEMs to check that the data is

correctly loaded. In the toolbox there are several func-
tions that can be used to plot EEMs.

a. Typing
PlotEEMbyl (1:5,0riginalData, 'R.U. ")

will plot the first 5 EEMs in the dataset one at a
time as contour plots. The next graph can be
viewed by pressing any key on the keyboard. If 1:5
is replaced with 1:65 all 65 samples will be plotted
one at a time. The plotting process can be halted at
any time by entering [Ctrl+C] on the keyboard and
then closing the Figure window.

b. Typing

PlotEEMby4 (1,0riginalData, 'R.U.")

will plot the data four at a time. This is quicker
when dealing with large datasets.

c. Typing
PlotEEMby4FixZ (1,0riginalData, 'R.U.")
does the same as above but plots the data with a

fixed z-axis (color bar scale) automatically derived
from the min and max measured data.
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3. Try using the three functions. Also try typing help
PlotEEMby1l, help PlotEEMby4, and finally help
PlotEEMby4FixZ. Some instructions on how to use
the functions are printed to the Command Window.
This is true for all functions in MATLAB (e.g. try typ-
ing help load).

4. Surface plots can also be plotted in a similar way using
the PlotSurfbyl, and PlotSurfby4 functions.

C. Cutting the region of the spectra influenced by scatter peaks.
1. This step creates a new copy of the data where the
wavelengths influenced by scatter peaks have been cut
and replaced with missing values or zeros. Type

[CutData] =EEMCut (OriginalData,20,20,NaN, NaN,
'NO')

the data will be cut and then plotted so that the EEMs
before and after the cut can be compared. The graphs
will plot automatically from the first sample to the
last. The function deletes the data in the region of no
fluorescence (where emission wavelength is less than
excitation wavelength) and the regions greatly influ-
enced by first order scatter (where Rayleigh and
Raman peaks dominate the signal) and replaces them
with missing values (“NaN” (Not A Number) in MAT-
LAB). Additionally a region of zeros is inserted to assist
the PARAFAC modeling.

2. Type

help EEMCut

to read an explanation of what this function does.
3. Experiment with changing the input values for
(20,20,NaN,NaN, 'No') and observe how the data
is cut differently.
4. Before proceeding with the tutorial type

[CutData] =EEMCut (OriginalData,20,20,NaN,NaN, '"')

so that the data is processed appropriately for the rest
of the tutorial. This will cut the data, but not plot the
results.

D. Initial explorative data analysis and outlier identification.

In this step, a series of PARAFAC models are run in order to
explore the data for outlier samples, noisy wavelengths, or
other potential problems with the data that are not easily
identified by visual analysis of the EEM plots. The step is struc-
tured into two tests: one on the original (complete) data and
a second on a modified data set where outliers have been
removed. The dataset can be reduced in size by selecting every
other Emission wavelength, (i.e. 300, 304, 306 ....nm, instead
of the measured 300, 302, 304, 306. This will speed the mod-
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eling process considerably, without necessarily notably influ-
encing the outcome (except the spectral resolution of the
loadings). This is not done here but try it out later. The ques-
tions to be addressed here are;

- Are there specific samples or wavelengths that are influ-
encing the model fit much more than the others?

- What seems to be the appropriate “ball park” number of
PARAFAC components (i.e. the number of distinct fluores-
cent phenomena)? 3-5 components, 8-10 ? etc. When do
the spectra of the components found begin not to look like
organic fluorophores but more like scatter peaks or noise?

1. Type
help OutlierTest

into the Command Window and read the explanation
of the function.
2. Type

[Testl]=OutlierTest (CutData,2,1,7,'No', 'No')

to perform the first test. After pressing any key this
will run a series of models from 2 components to 7
components. The results from these initial five mod-
els (2, 3, 4, 5, 6 and 7 component models) can be eval-
uated in many ways but for this tutorial we will use
two types of plots; loadings and leverages. These tests
will take approx 3 minutes for your computer to run.
3. Type

help PlotLoadings
and read about the function then type

PlotLoadings (Testl, 2)
and a figure will be created showing the scores and
loadings of the model (a, b and cin Equation 1).

4. Plots b and cshow the emission and excitation load-
ings of the two components. Plot a shows how the
concentration of the two components varies between
samples. Check that the loadings look reasonable, i.e.
that they are smooth and spectral appearance that cor-
responds well with your understanding of the data.

5. Another useful plot is that of leverages. Type

help PlotLeverage
and read about the function and then type

PlotLeverage (Testl, 2)

and a figure will be created showing the leverages. In
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the plot, look for samples that have extreme leverages
indicating extreme and potentially outlying samples.

6. Tip: Using the function P1otLL creates a combination
of both the leverage and loading plots. Try typing

PlotLL(Testl, 2)

7. Now try creating the same plots for the other models
(3, 4, 5, 6 and 7 components). After examining the
loading plots it should be apparent that we need to
begin to constrain the model. Some of the loadings are
negative. For example in the 4-component model one
of the components has negative values of a and
appears to cancel out one of the other components.
These "wrong" loadings could appear because a wrong
number of components is used but pursuing the analy-
sis under the tentative assumption that four compo-
nents are valid, it is reasonable to try to circumvent
the problem by forcing the parameter to be non-nega-
tive. In a more final model it is useful to focus on why
such an added constraint is needed for the model to
provide chemically meaningful results but this is not
necessary at this stage.

8. Rerun the test but with non-negativity constraints by

typing
[Test2]=OutlierTest (CutData,2,1,7,'Yes', 'No'")

Now plot the loadings and leverages. (You can com-
pare the effect of applying non-negativity constraints
by plotting the results from both tests, e.g. for a four
component model type P1lotLL (Testl,4) then
PlotLL(Test2,4)). Afterwards plot the loadings and
leverages from the other models.

9. The leverage plots seem to suggest that samples 5, 21,
30, 40 and 53 may be problematic. So we should now
try plotting the EEMs of these samples and compare
them to the others to see if they contain some measure-
ment error. (e.g. use PlotEEMby4 (1, CutData, 'R.U. ")
and see if these sample differ from the others). Only
samples 5 and 30 are clear outliers with measurement
erTorS.

10. Now we can resample the data, removing samples 5
and 30. This is done using the RemoveOutliers func-
tion. (type help RemoveOutliers for a description).
Next type

[Test3] =RemoveOutliers (CutData, [5 30], [1, [])
into the Command Window. This creates a new copy
of the data called Test3 without samples 5 and 30.

11. Now re-run the models but on the new data

[Test3]=OutlierTest (Test3,1,1,7, 'No', 'No')
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and afterwards plot the leverage and loadings data for
each model, e.g. PlotLL (Test2, 3). The leverages
appear to have improved slightly. However it is still
clear that we have problems with negative concentra-
tions as mentioned earlier. This can be addressed by
applying non-negativity constraints to the model. We
can rerun the model and overwrite Test3 with non-
negativity constraints applied. Type

[Test3]=OutlierTest (Test3,1,1,7,'Yes', 'No')

to do this. After the models have been fitted (this will
take a little longer than earlier) try plotting the load-
ings and leverages for all the models again (e.g.
PlotLL (Test3, 3)). Now the loadings appear to be
more logical (i.e. they do not exhibit negative fluores-
cence). The leverage plots suggest that we should
check sample number 20 (originally sample 21 before
we removed sample 5 earlier). Type

PlotEEMbyl (18:22,Test3, 'R.U.")

to plot samples 18 to 22 and see if it is apparent why
sample 20 has a higher leverage. It seems to have a
high amino-acid-like fluorescence and does not appear
to contain any measurement error. For now we will
leave it in the data set, however later you can try test-
ing this by removing this sample and seeing what
effect it has on the model outcome.!

12. The next function we will use is EvalModel which

creates a series of graphs which we can use to evaluate
the model fit by looking at the residuals (measured
minus modeled data). Type

help EvalModel

and read its description. (If you prefer surface plots use
the EvalModelSurf function.) To evaluate the model

type

EvalModel (Test3, 4)

and examine the plots made for the 4-component
model. In particular examine the residual EEM. Ide-
ally this should not contain any systematic signals
and consist mostly of instrument noise. One can
see that the four component model is generally
adequate for the majority of the samples. There are
however a handful of samples with an unexplained
fluorescence in the region of 325 nm excitation

13.
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and 400 emission. Next evaluate the other models
(2, 3, 5, and 6 components) using the same func-
tion. Try also plotting the results from the models
fitted before the outliers were removed (e.g. Test2)
and examine the residuals for the identified outlier
samples.

Next we can compare the results of two different
models using the Compare2Models (or
Compare2ModelsSurf ) and CompareSpecSSE
functions. Type

help Compare2Models

and

help CompareSpecSSE

for a description of each function. Then enter

Compare2Models (Test3, 3,4)

14.

to compare the 3 and 4 component models. Likewise
compare the 4 and 5 component models and 5 and 6,
and 6 and 7 component models. From these plots it
appears that at least four components are required.
Next compare the loadings from the 4, 5, 6 and 7
component models by typing

PlotLoadings (Test3,4)

PlotLoadings (Test3,5)

PlotLoadings (Test3,6)

PlotLoadings (Test3,7)

15.

Here one can see how the components are evolving as
the model increases in complexity. The components
from each model are generally very similar and with
each step one component is split into two in order to
model the data better and remove systematic variabil-
ity left in the residuals. This a positive result and indi-
cates consistency between the models rather than ran-
dom local minima results.

Next the spectral sum of squared error can be examined
using the CompareSpecSSE function. Try entering

CompareSpecSSE (Test3,3,4,5)

The sum of squared residuals in the excitation and
emission directions for three different models are plot-
ted. Try also comparing the 4, 5 and 6 component mod-
els and finally the 5, 6, and 7 models. From these results
it seems clear that the step from the 6 to 7 component

! Create new sub set of the data: [Test4]=RemoveOutliers (CutData, [5 21 30],[],[])
Run models on new data: [Test4]=OutlierTest (Test4,1,1,6,'Yes', 'No')
Plot and compare loadings: PlotLoadings (Test2,4) PlotLoadings (Test4,4)

model offers little improvement of fit suggesting that 6
or fewer components are adequate for this data.
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16. After this stage of the analysis we have identified and
removed the suspected outlier samples and found that
the correct number of components required to model
this data lies between 4 and 6 components. Now it is
time to attempt to validate the models.

E. Split Half analysis and validation

Now the data will be split (divided) into halves. Instead of
just making one type of split, two different splits are made,
each dividing the data in a different way. This allows us to run
two split half analyses and to use the one that performs best.
Sometimes a split can be sub-optimal with an uneven distri-
bution of types of samples between the two halves. Ideally the
split should be as “random” as possible. The diagram below
shows how the data is split using the SplitData function in
the toolbox.

Samples
1 Group 1
2 (#1,5,9,13...)

> 1st Split Half Analysis
5 Group 2

6 #2,6,10, 14...)

10 Group 3
#3;7,:11,15:)

1
]j > 2nd Split Half Analysis
Group 4

#4,8,12,16...)

1. Type
help SplitData

to read an explanation of what the function does.
Then enter

[AnalysisDatal] =SplitData (Test3)

into the Command Window. Four graphs are plotted
which show the sum of squared values for each half
of the data in the excitation and emission directions.
The curves for each pair of halves should be similar
(1-2, 3-4).

2. Next perform the split half analysis using the
SplitHalfAnalysis function. There are several
options to choose from. For a description type

help SplitHalfAnalysis
Now enter,

[AnalysisData] =SplitHalfAnalysis (AnalysisData,
(3:7), 'MyData.mat"')
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to carry out an analysis. This will fit models with
3 to 7 components to the data. This step will take
10-20 minutes, depending on the speed of your
computer.

3. Now the results of the analysis can be examined
using SplitHalfvValidation function (enter help
SplitHalfValidation for an explanation). This
function mathematically compares the excitation
and emission loadings of the models run on separate
splits of the data using Tucker Congruence Coeffi-
cients as described by (Lorenzo-Seva and Berge,
2006) and states in the Command Window whether
the model is validated or not. Additionally the emis-
sion and excitation loadings from each half are plot-
ted so you can compare them visually. Type

SplitHalfValidation (AnalysisData, '1-2",3)

to see the results for the 3 component model on the
first split (1-2). You will find that it is validated. Now
try for the other component models (3 to 7) and for
the other split (3-4). You will find that four compo-
nents can be split half validated.

F: Analysis using random initialization

Next a series of models will be fitted to the whole data
using a random initialization of the model. We need to ensure
that the model we derive is in fact the least squares result and
not a local minimum. The PARAFAC model is fitted using an
alternating least squares algorithm and as with other iterative
fitting procedures (e.g. a simple non-linear regression) it can
be influenced by its starting estimates. In this step a random
initialization procedure is used to fit many models with the
same number of components, so that we find the true least
squares result (best fit).

1. To read about the function type

help RandInitAnal.
2. Next type
[AnalysisData] =RandInitAnal (AnalysisData,4,10)

to run 10 four component models using random ini-
tialisation. This will take 15-20 minutes.

3. Once the modeling is finished a plot showing the sum
of squared error from each model is plotted. The model
with the least squares result is highlighted with a green
circle. (The plot can be re-plotted without rerunning
the analysis using the RandInitResult function).

4. Examine the loadings and fit of the model using the
PlotLL and EvalModel functions you used earlier
(e.g. PlotLoadings (AnalysisData, 4), EvalModel
(AnalysisData,4)).
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5. Finally check to see that the emission and excitation
loadings are the same as those found during the split
half validation earlier. This should always be the case,
however it is advisable to check. This can be done both
visually by re-plotting the split half analysis results

SplitHalfValidation (AnalysisData, '1-2"',4)

6. This can also be done mathematically by using the
Tucker Congruence Coefficients described earlier
(type help TCC for an explanation then

TCC (AnalysisData.Model4,RAnalysisData.Split (1)
.Fac 4)

7. Evaluate the model fit one last time using the
EvalModel function. We have now arrived at a
robust four component model for the data. Try to
test and see if the five and six component models
can be validated in this way.

G:Create plots of components
To create surface or contour plots of each component, the
ComponentEEM or ComponentSurf functions can be used.
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Each component will be labeled plotted in a separate window.
Type help ComponentEEM or ComponentSurf for assistance.

H: Export data out of MATLAB

Now that a six component model has been fitted and vali-
dated to the data, the results can be exported out of MATLAB
if required using the ModelOut function. This will create an
excel file with the fluorescence intensities of each component
in each sample and the emission and excitation loadings of
each component. For example type

[FMax, B, C] =ModelOut (AnalysisData, 4, 'C:\MyPara
facResults.xls')

These data are also available in the MATLAB workspace as
FMax, B and C respectively, should one want to carry on work-
ing in MATLAB.
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