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Bilinear andmultilinear models such as principal component analysis and PARAFAC have intrinsic sign indeterminacies.
For example, any loading vector can be multiplied by �1 if another vector of that particular component is also
multiplied by �1 without affecting the loss function values. This sometimes causes problems, for example, with
respect to interpretation. In this paper, a method is developed to fix the sign indeterminacy for the PARAFAC,
Tucker3 and PARAFAC2 models. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Latent variable models such as principal component analysis
(PCA) [1–3], PARAFAC [4,5] and Tucker [6,7] have intrinsic sign
indeterminacies. For example, in a PCA model, it holds that the
scores (T) and loadings (P) are found to minimize the least

squares loss function X� TPT
�� ��2

F
. This loss function is identical

to X� �Tð Þ �PT
� ��� ��2

F
, and hence, the score matrix can be

exchanged with �T as long as the loading matrix is replaced
with�P. Mathematically, there is no way to distinguish between
the two solutions.

In a two-way model, changing the sign of, for example, the
score vector of component three is explicitly countered by
having to change the sign of the corresponding third loading
vector. Samples that have high positive scores on this original
component have high values on the variables with high loading
elements. This interpretation is unchanged, even when signs are
switched, so the sign indeterminacy is of moderate conse-
quence for a two-way model. In [8], a method was developed
to assign meaningful signs to scores and loadings in PCA
models. In this paper, these results are further developed to
allow a similar sign correction of common multiway models.

In a PARAFAC model, it is also possible to change the sign of
say the first column of the first mode component matrix A (a1),
and it must be countered by changing the sign of either the
corresponding second mode loading vector, b1, or the third
mode loading vector, c1. Hence, for a one-component PARAFAC
model, it holds that this component can consist of the following
vectors:

a1;b1; c1ð Þ; �a1;�b1; c1ð Þ; �a1;b1;�c1ð Þ; or a1;�b1;�c1ð Þ

Any of these representations of the component will have the
same loss function value and are hence equally valid from a
mathematical point of view.

For data such as many kinds of spectroscopy, the signs are
easy to deduce from the appearance of the components,
because underlying spectra, concentrations or time profiles
are positive. In other situations though, there is no intrinsic
convention that can help guide the appropriate choice of signs.

In 2008, the sign problem for PCA was suggested to be
resolved using an assumption that the “natural” sign is the one
that leads to a component that points in the direction where
the majority of the data are pointing [8]. The basic premise of
this approach is hinted at in Figure 1.
In this paper, similar approaches will be developed for

PARAFAC, Tucker3 and PARAFAC2 models. In the following, we
will use standard notation as given by Kiers [9]. Furthermore,
residuals are excluded in all equations throughout, as the
residuals are immaterial for the points made here.

1.1. Theory

1.1.1. PARAFAC

In PARAFAC, sign indeterminacies arise in the low-rank trilinear
model because

Xk ¼ ADkBT
k ¼ AS1S3DkS2BT

k ; for k ¼ 1; . . . ; K

where S1, S2 and S3 are diagonal matrices with +1 or �1 on
the diagonal. Together, they fulfill that S1S2S3 = I. Hence, the
model given by A, B and C can be replaced by a model given
by AS1, BS2 and CS3 without changing the loss function. This
extends without problems to PARAFAC models of an order
higher than three.
To determine the appropriate sign, it is sufficient to

consider one component at a time. The contribution from other
components can be removed from the data before the sign of
any given component is assessed [8].
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When the appropriate sign, for example, for the first mode
component, is assessed, the PARAFAC model is re-expressed as
a bilinear model

Xunfold ¼ azT

where a is the component (column of A) currently considered
and z is the Khatri–Rao product of the corresponding columns
of B and C. Xunfold is the three-way array unfolded/matricized
appropriately. The vector a is normalized. For each column of
Xunfold, the inner product with a is calculated, squared and
multiplied with the sign of the inner product as was suggested
in the original PCA sign correction approach [8]. If a vector is in
the same direction as a (corrected for the size), then this number
is large and positive, and if it points in the opposite direction,
then the number is negative. The sum of all numbers indicates
how strongly a is in the same or opposite direction as the majority
of the data,

sa ¼
XJ

j¼1

sign aTxj
� �

aTxj
� �2

(1)

where xj is the jth column of the matricized array. The same
procedure is repeated in each mode, giving a preferred sign
for the component in each mode as well as a magnitude of
how preferred the sign is.
If the number of negative signs is even, then the signs of each

mode s1, s2 and s3 will have a combined product of 1, and the
signs of component vectors can hence be changed accordingly
without changing the loss function. For example, if both a1 and
b1 of component one has a negative s value, but c1 does not,
then a1 is replaced with �a1 in the model and likewise for b1.
As the product of �a1, �b1 and c1 remains the same as that of
a1, b1 and c1, the model is unchanged.
If the number of negative signs is odd, the magnitudes are

used to decide which one of the signs should be disregarded.
The vector that has the sign with the lowest associated
magnitude is modified opposite to what the sign suggests, thus
making the product of signs equal to 1. Conflicting numbers of
negative signs occur, for example, when data are centered,
because then the direction in the centered mode can become

arbitrary (yet of small magnitude). For more information on
the basic procedure, please consult Bro et al. [8].

1.1.2. Tucker3

In essence, the preceding section defines how to assign proper
signs for the PARAFAC model. Next, the Tucker3 model is
considered. The Tucker3 model is a complicated model to
explore and visualize because of the core array. Essentially all
vectors in onemode interact with all the vectors in all othermodes.
This makes it impossible to visualize all modes of a Tucker3 model
simultaneously as also described by Kroonenberg in his work on
so-called joint plots [10]. It also makes it impossible to rigorously
define a preferred overall direction/sign of a vector because any
one-component vector can have different preferred directions
depending on interactions in the other modes. Hence, a generic
sign convention for Tucker3 will have to be somewhat ad hoc.
One possible and feasible solution can be to focus on models
that have approximately superdiagonal cores. Such rotated
models can be simpler to interpret if the rotated model does
indeed end up having an approximately superdiagonal core
[11,12]. In such cases, we will advocate that the model be interpreted
as a PARAFAC model disregarding the off-superdiagonal core
elements when defining appropriate signs of components.
That way, the signs of the components are switched by solely
reflecting the interactions of vectors in different modes with
similar component number.

A slightly more general solution is also developed. This approach
can be used whenever the model is not interpreted as a
PARAFAC model; that is, when the user also pays consideration
to off-superdiagonal elements of the core in the interpretation.
This method is also the one we have implemented in the software
associated with this paper, but the “PARAFAC approach” is of
course still viable. The general procedure proceeds as follows.
Assuming at first that the core array has no preferred sign, the sign
of loading vectors in each mode can be assigned independent of
all the other modes because any sign switch in one-component
matrix can be countered by a sign switch of the core.

The data to use for calculating the sign for a given vector are
found by subtracting the remaining components. This means
using all components in the other modes and using all but the
given component in the mode of interest and the corresponding
core array. This can be exemplified as follows. Assume that the sign
of the fth component inmode one is sought. The Tucker3model of
the three-way array is given by the components in A, B and C
and the core array G. To remove the influence of remaining
components, the model from those is subtracted as

Xres ¼ X� AfGf C�Bð ÞT (2)

Here, X is the matricized three-way array and Af is the first mode
component matrix with column f excluded. The matrix Gf is the
matricized core array where the fth horizontal slab has been
excluded. The residual matrix Xres now contains the part of
the original data that the fth column of A is modeling. Hence,
the part of the Tucker3 model pertaining to that column can
be written as

Xres ¼ af zTf þ E (3)

where af is the fth column of A and E is the original residual array
of the Tucker3 model. The vector zf is defined by
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Figure 1. A set of spectra (thin lines) modeled by a one-component
principal component analysis model. The first loading vector (estimated
using the built-in function SVD in MATLAB R2011b) is shown with a thick
line (scaled). It is apparent that the loading has a direction opposite to the
majority of the data. Switching the sign of the loading (and the corresponding
score) will give a model that is in better accordance with the data.
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zf ¼ gf C�Bð ÞT (4)

where the vector gf is the vectorized fth horizontal slab of the
core array.

Using themodel representation in Equation (3), we can determine
the appropriate sign of the fth column of A from Equation (1).

If the sign of column f is switched in A, then correspondingly,
the fth horizontal slab of the core array is multiplied by�1. With
this approach, all vectors in all component matrices point in a
preferred direction, all other things being equal. It may happen,
though, that some core elements are negative, and we argue
that in interpreting a Tucker3 model, it is most natural that
core elements are positive. This can be compared with having
negative singular values in a singular value decomposition.
Although mathematically feasible, a positive value is more
natural. It is not necessarily possible to transform any Tucker3
model to have all core elements positive. Rather than
attempting this, we investigate only the largest core elements.
Starting with the largest (negative) core element, the sign of this
is switched by looking at the three vectors in each mode that it
reflects. Assume that the core element is element (i, j, k), then
the magnitude of s for the corresponding vectors ai, bj and ck
is assessed according to Equation (1). Each of these three vectors
has been sign corrected as outlined earlier, but the corresponding
(large) core element is negative. It is therefore suggested to
switch the sign of one of these three vectors that has the
smallest value of s. This way, the largest combinations of core
elements will end up having a “natural” core sign. This defines
the sign convention for Tucker3.

1.1.3. PARAFAC2

Finally, the PARAFAC2 model is considered. This is, by far, a more
complicated model to deal with. The PARAFAC2 model can be
written as

Xk ¼ ADkHTPT
k ¼ Að Þ DkHTPT

k

� � ¼ AGT
k k

T ; for k ¼ 1; . . . ; K

which implies that the concatenated frontal slabs can bewritten as

X1X2⋯XK½ � ¼ A G1G2⋯GK½ �T

This is a bilinear model, and the sign ambiguity within the
product ofDk and Pk is essentially eliminated in this representation
because only their product appears (inside Gk). From this bilinear
model, the overall sign of A and the concatenated matrix can be
determined using the two-way sign correction approach described
in Equation (1) [8]. This also extends to higher-order PARAFAC2
models, where instead of A, the Khatri–Rao product of all but the
two “special”modes would take the position ofA. Because the sign
of A is then fixed, each slab, Xk, can now be assessed using

Xk ¼ ADkð Þ HTPT
k

� � ¼ ADkð ÞSkSk HTPT
k

� �
; for k ¼ 1; . . . ; K

where Sk is a diagonal matrix with þ1 or �1 on the diagonal. We
can further develop this as

Xk ¼ ADkð ÞSkSk HTPT
k

� � ¼ ADkSkð Þ SkHTPT
k

� �
; for k ¼ 1; . . . ; K

Because the matrix Sk is specific to k, we cannot apply Sk to H.
This would change H and hence invalidate the model of other
slabs. However, it can be shown that

SkHTPT
k ¼ HTMkPT

k

where Mk =HT + SkH
T because it follows that HTMk=HT(HT +

SkH
T) = SkH

T because H is a square and full-rank matrix per
definition. Hence, we can sign correct Pk using Mk instead of
Sk. With this, the preferred sign for each pair of Pk and Dk can
be determined and corrected. Note that the PARAFAC2 model
is quite special in that each element of the diagonal of Dk can
switch sign independently because of Pk. This means that each
and every element of the loading matrix C can change sign
independently of all others. Also note that we do need to obtain
the appropriate signs of the columns of Pk (and H). Even though
only the product of the two appear in the actual PARAFAC2
model, the correct signs of H are needed to find the appropriate
signs of the remaining parameters.
With the sign of C fixed, there is still a potential sign indeter-

minacy within PkH because PkH= PkSSH. Notice that S is com-
mon to all slabs. We take a pragmatic approach and determine
the appropriate sign for each slab as

Xk ¼ ADkHSkSkPT
k ; for k ¼ 1; . . . ; K

Subsequently, the most abundant sign is chosen by using the
sign of the sum of all Sk.
Thus, having fixed the sign ambiguity of the Pk matrices, we

now correct the rest of the model parameters. For higher-order
models, it may be necessary to express the model as a PARAFAC
model given the fixed Pk matrices. Assuming a higher-order
model where components of several modes are held as a
Khatri–Rao product matrix [13] in A, a model of the slabs XkPk
can be expressed as a PARAFAC model:

Yk ¼ XkPk ¼ ADkHTPT
kPk ¼ ADkHT ; for k ¼ 1; . . . ; K

From this, the signs within the several modes in A (refer to earlier
discussion) can be determined by using the sign fix approach of an
ordinary PARAFAC model. Hence, all signs are thereby fixed.

2. RESULTS

To verify that the sign correction is meaningful, a few examples
are given. One example on a Tucker model is given and two
examples focusing on the PARAFAC2 model. The PARAFAC
corrections are more straightforward extensions of the original
sign correction of [8], so these are not further discussed here.
For exemplifying Tucker sign corrections, we analyzed a data

set that describes the average daily amount of pollen for
40 weeks (first mode) for 16 plant families (second mode) during
5 years (third mode) in an area close to Tortona, Piedmont,
Northern Italy [14]. The weeks taken into account go from Week
6 (mid-February) to Week 45 (beginning of November).
The 16 families are the following: Betulaceae, Corylaceae,

Cupressaceae–Taxaceae, Fagaceae, Oleaceae, Pinaceae, Salicaceae,
Chenopodiaceae–Amaranthaceae, Compositae, Graminaceae,
Plantaginaceae, Polygonaceae, Urticaceae, Alternaria, Cladosporium
and others+nonidentified.
The years covered are 2006–2010. For the final Tucker3

model, the number of components chosen was two in the first
mode, two in the second mode and one in the third mode.
The model is rotated to be superdiagonal in the 2� 2 plane of
the core, and this is perfectly achievable when the last mode
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has only one component. Hence, components can be compared
across modes. That is, score one in mode one is only related to
score one in mode two and likewise for Score 2. After sign cor-
rection, the loading plots are as shown in Figure 2.
As opposed to the “original” orientation in the model, the sign

correction allows us to have a direct joint interpretation of the
loading plots. The period of pollination of each family can be
easily seen (e.g., Salicaceae, Cupressaceae, Betulaceae and
Corylaceae in spring; Fagaceae, Graminaceae and Polygonaceae
in summer; and Compositae, Cladosporium and Alternaria in
autumn), for example, in 2010, the spring pollination was
slightly larger than that in 2008 and 2009.

For an example of sign correcting a PARAFAC2 model, a data
set of 44 red wine samples is used. The volatiles of the samples
were collected from 10mL of each wine on a Tenax-TA trap.
The trapped volatiles were desorbed using an automatic thermal
desorption unit and transferred to a gas chromatography
(GC) system (HP 6890 GC). The GC was equipped with a mass
spectrometric detector operating in the electron ionization
mode at 70 eV. More experimental details can be found in [15].

An example of a typical PARAFAC2 model from a part of
the elution time is shown in Figure 3. A three-component
unconstrained PARAFAC2 model seems to be appropriate, but
several loadings are turned upside down. This is readily seen in
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Figure 2. Sign-corrected scores and loadings of a Tucker3 model of pollen data with a diagonal core array.

2640 2660 2680 2700
-0.8

-0.4

0

0.4

No sign correction

Elution time [scans]

2640 2660 2680 2700

0

0.2

0.4

0.6

0.8

Sign correction

Elution time [scans]

50 100 150

-0.5

0

0.5

m/z fragment

50 100 150
0

0.2

0.4

0.6

0.8

m/z fragment

5 10 15 20

-2

-1

0

1

x 105 x 105

Sample
5 10 15 20

0.5

1

1.5

2

2.5

Sample

Figure 3. The left side shows the result of a three-component PARAFAC2 model of a chromatographic data set (top: elution mode loadings (Bk);
middle: mass spectral loadings (A); bottom: sample mode loadings (C)). The right side shows the same model upon sign correction.
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the mass spectral mode, where two loading vectors are
exclusively negative. Also note that in the sample mode, the
sign indeterminacy means that every element in a given loading
vector can change sign independently of others. It is very easy
to see in the rightmost sign-corrected version that the sign
correction not only is meaningful but also greatly helps in
discerning more subtle details of the model.

Another example can be seen in Figure 4. These data come from
GC–mass spectrometry analysis of cheese after the samples
have been oximated with methoxyamine (20mg/mL in pyridine)
followed by derivatization with N-methyl-N-(trimethylsilyl)
trifluoroacetamide (as suggested by Kanani et al. [16]). The
samples were analyzed on an Agilent Technologies 7890A GC
system coupled with a 5975C inert XCMSD detector. In the
uncorrected model, it is clear that the loadings for one of the
components are turned upside down in the elution time mode
as well as in the mass spectral mode. After sign correction, the
model appears chemically meaningful with respect to the signs.

3. CONCLUSION

A formal approach has been developed for correcting for sign
indeterminacies in various multiway models. Some illustrative
examples have been given to show that the correction indeed
makes sense from an interpretational point of view.

The sign-correcting function is available at www.models.life.
ku.dk (February 2013) as a MATLAB routine.
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