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A modification of the standard Canonical Variates Analysis (CVA) method to cope with collinear

high-dimensional data is developed. The method utilizes Partial Least Squares regression as an

engine for solving an eigenvector problem involving singular covariancematrices. Three data sets are

analyzed to demonstrate the properties of the method: a two-group problem with near infrared

spectroscopic data consisting of 60 samples and 376 variables, a multi-group problem with fluor-

escence spectroscopic data (1023 variables) consisting of 83 samples from six groups and a

three-group problem with physical-chemical data (10 variables) consisting of 41 samples from three

groups. It is demonstrated that the modified CVAmethod forces the discriminative information into

the first canonical variates as expected. The weight vectors found in the modified CVA method

possess the same properties as weight vectors of the standard CVA method. By combination of the

suggested method with, for example, Linear Discriminant Analysis (LDA) as a classifier, an

operational tool for classification and discrimination of collinear data is obtained. Copyright #

2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multi-collinear data including data sets with more variables

than samples are often met, for example, in chemometric

data analysis particularly due to the development of modern

instrumental methods such as nuclear magnetic resonance,

near infrared, infrared, fluorescence, Raman and mass

spectroscopy. For exploratory data analysis of such data,

latent variable methods, for example, Principal Component

Analysis (PCA) [1–3], have proven to be highly beneficial.

When it comes to the application of classification and

discrimination methods on highly collinear data the

procedure is often to perform a dimension reduction (e.g.,

by PCA or Discriminant-PLS (DPLS) [4]) of the data prior to

the application of standard discrimination methods on the

scores values (e.g., Fisher’s Linear Discriminant Analysis

(LDA) [5,6]). This dimension reduction is necessary because

standard discrimination methods are based on full rank

non-singular data; that is, data with low collinearity.
ndence to: L. Nørgaard, Department of Food Science,
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One problem in using PCA is that the components

calculated might not necessarily be the components relevant

for discrimination and then the subsequent use of, for

example, LDA on the score values might not give the optimal

result or that so many components are needed that

exploratory analysis and data-mining is needlessly compli-

cated. As an alternative to PCA a possibility is to use DPLS as

a pre-processing technique and then apply the classifier on

the obtained PLS scores. By the application of a dependent

matrix containing information about the groups, the PLS

loadings and thereby the scores will be more relevant for

discriminative purposes [7]. Common to the dimension

reduction-based methods is that they produce intermediate

scores that subsequently are analyzed by the chosen

classifier. This can make interpretation of the results with

respect to the original high-dimensional data more difficult

since the interpretation is first performed in the reduced

space and then in the original data space through the model

applied in the pre-processing. An alternative to the above-

mentioned methods is to apply DPLS alone [4], that is, the

predictions in a DPLSmodel are used to classify an unknown

sample. In DPLS the interpretation can be performed with

respect to the original high-dimensional data space but DPLS

suffers from poor performance in situations not unlikely to

occur in real data [8].
Copyright # 2007 John Wiley & Sons, Ltd.
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Canonical Variates Analysis (CVA) [6,9] is a method for

estimation of directions in space that maximize the

differences between the groups in the data according to a

well-defined optimization criterion. A drawback of CVA is

that it cannot deal with highly collinear data, for example,

spectroscopic data tables where the number of variables is

larger than the number of samples. Methods have been

developed to compensate for this problem by replacing the

singular matrices involved in the maximization criteria

[10–12]. Related to these methods is the principal discrimi-

nant method developed by Jiang et al. [13] which is a sort of

regularized discriminant analysis [14] bridging the gap

between PCA and CVA by testing a continuum of methods.

Also CVA-based ranking of principal components have been

developed [15] as well as weighted PCA of the group means

[16]. The reader is referred to Naes and Indahl [17] that

provides a unified description of classification methods for

multi-collinear data.

In this study an alternative method is suggested to solve

the problem of singular matrices that results when analyzing

collinear data with CVA. The method is based on the

standard CVA and by a transformation of an eigenvector

problem to a regression problem it is possible to use PLS in

the inner part of CVA thereby allowing for the analysis of

collinear data. The suggested method calculates canonical

variates directly in the original high-dimensional space

making it possible to interpret the model in relation to this

space and perform outlier tests directly without an

intermediate model. The suggested method preserves the

properties of the standard CVA method.
2. THEORY

We start by outlining the standard method of CVA which is

the basis for the developed method. In Reference [6] a

description of CVA is given and this reference together with

Reference [18] are used throughout as the references for the

basic theory. Please note that the following also is presented

as a part of Fisher’s LDA in many texts (e.g., [18]).

Assume a data matrix X (n� v) where the samples are

divided into g different groups with ni samples in the

ith group n ¼
Pg

i¼1 ni

� �
.

The within-group covariance matrix is defined as

Swithin ¼ 1

ðn � gÞ
Xg

i¼1

Xni

j¼1

ðxij � xiÞðxij � xiÞ0 (1)

and the between-group covariance matrix is defined as

Sbetween ¼ 1

ðg � 1Þ
Xg

i¼1

niðxi � xÞðxi � xÞ0 (2)

where xij is the jth sample in the ith group (represented as a

column vector), xi ¼ 1
ni

Pni
j¼1 xij is the mean vector in the

ith group, and x ¼ 1
n

Pg
i¼1

Pni
j¼1 xij ¼ 1

n

Pg
i¼1 nixi is the overall

mean vector. Note that the dimensions of Swithin and Sbetween

are both v� v.

It is nowpossible to define CVA as the problem of finding a

direction, w, that maximizes

JðwÞ ¼ w0Sbetweenw

w0Swithinw
(3)
Copyright # 2007 John Wiley & Sons, Ltd.
The solution to this can be written as an eigenvector

equation

Sbetweenw ¼ lSwithinw (4)

If Swithin is non-singular we have the solution

S�1
withinSbetweenw ¼ lw (5)

which is an eigenvalue problem, where l represents the

eigenvalue and w is the eigenvector.

If Swithin is singular it is not possible to left multiply by the

inverse of Swithin and this is the cause of the breakdown of

standard CVA when analyzing, for example, multi-collinear

data.

2.1. The new approach for the two group
situation
The new method suggested is the following: for the

two-group situation Equation (4) can be rewritten as [18]

ðx1 � x2Þðx1 � x2Þ0w ¼ lSwithinw (6)

ðx1 � x2Þ0w is a scalar, k, so the equation can be written as

ðx1 � x2Þk ¼ lSwithinw (7)

Equation (7) is now transformed into a standard multi-

variate regression problem

y ¼ Rbþ f (8)

where y ¼ ðx1 � x2Þ is the dependent variable, R¼Swithin

contains the independent variables and b¼w is the

regression vector. f contains the residuals. Since k and l

are constants they do not change the solution of Equations (7)

and (8), or more precisely the direction ofw. In this context it

is suggested that Equations (7) and (8) are solved with a PLS

regression method but other regression techniques are also

applicable. The developed method can be considered as an

alternative way of estimating a pseudo-inverse for Swithin by

PLS. By multiplication of the mean-centered data matrix,

XMCwith theweight vector,w, the canonical variates, tCV, are

obtained (tCV¼XMCw). The mean centering is performed

using the mean vector of all calibration samples (the same

mean vector as used in the calculation of Sbetween). The

calculated canonical variates can be used directly in a

classifier which in this study is an LDA method and as such

the method becomes an LDA method for dealing with

collinear data.

2.2. Multi-group CVA
When more than two groups are considered more

directions may be needed to represent the data adequately.

These directions can be estimated from Equation 4 as

there will generally be more than one eigenvalue/eigen-

vector pair:

Sbetweenwa ¼ laSwithinwa (9)

where a indicates the number of directions. In general

Equation (9) has a¼min(v,g-1) non-zero eigenvalues and the

maximum dimensionality for the canonical space is thus a.

Analyzing high-dimensional data (large v) implies that the

maximum number of canonical variates is g� 1 (the number

of groups minus one).
J. Chemometrics 2006; 20: 425–435
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2.3. The new approach for the multi-group
situation
By analogy to the two-group situation we suggest that the

regression equation to be solved for the multi-group case is

Y ¼ RBþ F (10)

where Y contains as columns the differences ðxi � xÞ, that is,
the difference between each group mean and the overall

mean, R is Sbetween and the columns of B are wa (designated

as W in the following). F is the residual matrix. The

dimension of both Y and B (and F) is v� g.

PLS2 is used as the regression technique in Equation (10).

The number of weights calculated corresponds to the

number of groups and the weights are sorted in descending

order according to their values when inserted one-by-one in

the optimization criterion (Equation (3)). The weight with the

lowest value is left out before application of the classifier

because there is an intrinsic rank-deficiency due to the

closure properties of the dependent variables. The properties

of PLS2 will ensure that the space spanned by the retained

g� 1 weights cover the full space of the solution which is all

that is needed. An alternative solution would be to modify Y

such that the rank-deficiency was removed before perform-

ing the regression but this would imply an unequal scaling of

the groups which is not desirable [7]. If we alternatively used

g PLS1 models, rather than one PL2 model, it would not be

possible to remove one of these since they would span a g

dimensional space and furthermore the solution provided

would not be consistent with traditional CVA.

By multiplication of the mean-centered data matrix, XMC,

with the canonical weights matrix,W, the canonical variates,

TCV, are obtained (TCV¼XMCW) and LDA (or other

classifiers) can then be applied on these. The advantage of

the presented method is that no dimension-reducing step is

necessary before the classifier is applied to the canonical

variates; the discriminative directions are estimated directly

in the original multidimensional space which is of interest,

for example, spectroscopic applications. Residuals E, for

example, for outlier control, can be found as E¼XMC �
XMCW(W0W)�1W0.

2.4. Relation between standard CVA and
the suggested method
If the data considered are full rank and non-singular the

method suggested and standard CVA give identical

solutions.

For multi-group data there is a rotational ambiguity for the

W matrix. For standard CVA the following restrictions are

usually imposed for any i, j where i 6¼j [19]:

W0
iSwithinwi ¼ 1 (11)

W0
iSwithinwj ¼ 0 (12)

Since the new method might result in a rotated W, the

restrictions of Equations (11) and (12) are not in general

fulfilled immediately. Equation (11) can be fulfilled by a

suitable scaling of the weight vectors and Equation (12) can

be fulfilled by a rotation of W using the eigenvectors of

W’SwithinW as a rotation matrix. This scaling and rotation is

implemented in the algorithm used in this paper.
Copyright # 2007 John Wiley & Sons, Ltd.
2.5. LDA classifier
A LDA that fits a multivariate normal density to each group

with a pooled estimate of covariance [6] was used as the

classifier in the present study. The discriminant function for

the canonical variates is

LiðtÞ ¼logðpiÞ �
1

2
ðt� tiÞ0S�1

within;TCV
ðt� tiÞ

þlogjSwithin;TCV
j

(13)

where i is a group index (1; . . . ;g), t contains the canonical

variates (as a column vector) for the sample to be classified,

tiis the mean vector of the canonical variates for group i,

Swithin;TCV
is the pooled covariance matrix for the canonical

variates (an analog to Swithin for the raw data presented

above). The prior, p, was selected as equal probabilities, for

example, if six groups are analyzed the prior is 1/6 for each

group. The sample is classified to the group that gives the

highest value of Li.

2.6. Validation and data pre-processing
All models presented are validated using fivefold segmented

cross-validation [20], that is, if the data set consists of 60

samples, the samples left out in the first segment are 1, 6, 11,

16, 21, 26, 31, 36, 41, 46, 51, 56. It should be stressed that for

the models including LDA as the classifier both the

suggested CVA model and the LDA step are included in

cross-validation scheme.

Data that are normally mean centered (e.g., spectroscopic

data) should not be mean centered prior to application of the

suggested CVA method. The calculation of covariance

matrices has a built-in mean centering (Equations (1) and

(2)) for each group and a mean centering including all

samples. Data that are normally autoscaled should only be

scaled (i.e., not mean centered) prior to application of the

method due to the same reasons.

2.7. Method name
As described in the introduction several methods have been

developed to deal with the collinearity problem in CVA and

we suggest this class of methods is called Extended

Canonical Variates Analysis (ECVA) since the methods are

capable of handling extended data sets. Our specific

suggested method we name ECVA in the following. Used

for classification with LDA as the classifier it is called

ECVA-LDA.
3. EXPERIMENTAL

3.1. Software
MATLABVersion 7.2.0.232with the Statistics ToolboxVersion

5.2 (R2006a) (The MathWorks, Inc., Natick, MA, USA), the

PLS_Toolbox 4.0 (Eigenvector Research, Inc., Manson, WA,

USA) and LatentiX 1.05beta (Latent5, Denmark, www.

latentix.com) were used for the calculations.

Software for the suggested method was developed by the

authors and can be downloaded at http://www.models.

kvl.dk (ECVA Toolbox) together with the data sets analyzed.

Note that it is possible to apply other discriminant analysis

classifiers in the toolbox than presented in this paper; for
J. Chemometrics 2006; 20: 425–435
DOI: 10.1002/cem



428 L. Nørgaard et al.
example, quadratic discriminant analysis, and also the use of

non-uniform priors is an option.

3.2. Data sets

3.2.1. Near infrared spectroscopy data set—two
groups
In total 60 samples of blood from slaughter pigs from two

slaughterhouses were measured by near infrared spec-

troscopy. NIR spectra were collected in the interval

1100–1850 nm with a 2 nm step. Thirty samples are from

slaughterhouse A and 30 samples are from slaughterhouse B,

so the dimension ofX is 60� 376. The data are a subset of data

from a larger study [21] where the purpose was to investigate

if differences in pig stunning methods could be observed in

the blood.

3.2.2. Fluorescence spectroscopy data set—six
groups
In total 83 white sugar samples from six sugar factories were

measured in solution by fluorescence spectroscopy. The

number of samples from the six factories is 13, 14, 15, 14, 15,

and 12, respectively. The fluorescence emission spectra are

recorded at four excitation wavelengths: 230 nm (emission

275–560 nm), 240 nm (emission 275–560 nm), 290 nm (emis-

sion 311–560 nm), and 340nm (emission 361–560 nm) and the

spectra are concatenated before analysis. The dimension of X

is 83� 1023. For a thorough description of the sugar data set

see Reference [22].
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Figure 1. Near infrared spectra in the range 1100–18
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3.2.3. Physical-chemical data set—three groups
In total 41 white sugar samples from three sugar factories

were analyzed with respect to 10 quality parameters: ash

content, color, turbidity, grainsize Mk, grainSize s, SO2,

invert, floc, residue, and amino N. The number of samples in

the three groups is 15, 14, and 12, respectively. The

dimension of X is 41� 10. For a thorough description of

the sugar data set see Reference [22].
4. RESULTS AND DISCUSSION

4.1. Two-group model—data set one
The first example to be analyzed is the two-group case with

60 samples and 376 variables (Figure 1). The number of

canonical directions is always one less than the number of

groups in the data set and for the two-group case this means

that the solution is one-dimensional.

In Figure 2A the canonical weight vector for the ECVA

method is shown. This weight is based on eight PLS

components in the inner relation as given in Equation (8) (see

below for a justification of the number of components). In

Figure 2B the corresponding canonical variates are shown,

and it is observed that the discrimination seems promising.

In the original spectroscopic data it can be seen when

inspecting the raw and mean-centered data (not shown) that

the largest differences between the two groups of spectra are

in the wavelength range from 1400 to 1580 nm; this matches

the canonical weight which has large values in this spectral

range.
1500 1600 1700 1800
m

50 nm of 60 blood samples from two slaughter-

erely overlapping.
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PLS relation of ECVA on the NIR data.

100 200 300 400 500 600 700 800 900 1000

50

100

150

200

250

300

In
te

ns
ity

Variable number

Figure 4. Concatenated fluorescence spectra of 83 water dissolved white sugar samples originating

from six factories. The excitation wavelengths recorded are 230 nm, 240 nm, 290 nm, and 340nm.
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Adding LDA as the classifier the number of misclassifi-

cations in a fivefold cross-validation as a function of the

number of PLS components in the inner relation is given in

Figure 3. For 8–14 components the number of misclassifi-

cations are zero so 8 is chosen as the optimal number in this

case.

4.2. Multi-group model—data set two
Data set two is amore complex case including six groups; the

raw data are shown in Figure 4. In Figure 5A and B the first

two canonical variates and weights from an ECVA are

shown. For comparison scores and loadings plots from a

PCA (mean-centered data) on the same data is also given

(Figure 5C and D). As expected the ECVAmethod focuses on

discrimination in the early components compared to PCA

(compare Figure 5A and C). The ECVA method has five

canonical directions since the number of groups is six and if

combinations of the five corresponding canonical variates

plots are inspected it is seen that discrimination is

pronounced compared to the same plots for the PCA.

Considering the canonical weights, the price paid for

obtaining a good discrimination is that these contain more

noise than the corresponding loadings in the PCA model

(Figure 5B and D). The canonical weights are based on a 17

component PLS model in the inner relation and this is

reflected in the noisy structure of the canonical weights.
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LDA is introduced as the classifier with the canonical

variates as the inputs and the number of misclassifications as

a function of the number of components is shown in Figure 6.

The whole model (ECVAþLDA) was fivefold cross-

validated and the misclassification errors are the validated

errors. The optimal number of components in the inner

relation is estimated to be 17 and as for the prior example, it is

seen that the cross-validated results seem quite stable even

with slight overfactoring.

4.3. Multi-group model—physical-chemical
data set
This data set consists of physical-chemical data and the data

are scaled before analysis, that is, each element of a variable is

divided by the standard deviation of the variable (note that

the data should not be autoscaled).

In Figure 7A and B the canonical variates and weights

scatter plots from an ECVA are shown. These plots can be

interpreted from a chemical point of view, that is, the

discriminating variables for factory 3 versus 1 and 2

are turbidity, grainsize Mk, and color which are known to

be generally higher for factory 3 than the other ones. For

factory 1 versus 2 the discriminating variables are ash

content, amino N, and color.

Used in this way the ECVA method has exactly the same

options with respect to interpretation as the standard CVA

method.
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4.4. Comment on the inner relation
PLS model
Inspecting the inner PLS model, slight non-linearities are

sometimes observed (results not shown). This might be due

to the fact that the Swithin matrix is a covariance matrix and

therefore symmetric. It is important to notice that irrespec-

tive of the number of components used in the inner PLS2

model the resulting ECVA solution always finds g-1

directions. Another topic for future research is the compari-

son with other multivariate classification methods and with

methods utilizing different types of inverses for Swithin.

Regarding the last aspect it will be interesting to observe if

the inner PLS model can utilize the advantage normally

ascribed to PLS, that is, its ability to focus on the relevant

parts of the data.

5. CONCLUSIONS

In the present study the standard CVA method has been

modified to cope with multi-collinear data. The modified

method which is named ECVA possesses the same general

properties as the standard CVA method, that is, discrimi-

nation is forced into the first canonical variates. The ECVA

can be coupled with, for example, LDA as a classifier to yield

an operational tool for classification of collinear data.
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