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Parallel factor analysis 2 (PARAFAC2) has been shown to be a powerful tool for resolution of complex overlapping
peaks in chromatographic analyses. It is particularly useful because of its ability to handle shifts in the elution time
mode and peak shape changes. Like all curve resolution techniques, PARAFAC2 will only find chemically meaningful
parameters (elution time profiles and mass spectra) if the correct number of factors are determined. So far, the
primary way to determine an appropriate number of factors, when using PARAFAC2, is to calculate models with
different number of factors and then inspect the models manually. This approach is time consuming, and the result
may be biased because of the manual assessment of the model quality, making PARAFAC2 inaccessible for analytical
chemists in general. Here, we develop a method that can determine an appropriate number of factors in an auto-
mated way. The automation is based on a number of model diagnostics (quality criteria) collected from models with
different numbers of factors. Combining these diagnostics, it is possible to assess what the appropriate number of
components is. In this work, only gas chromatography–mass spectrometry data are considered. However, it will most
likely be fairly straightforward to expand the work to also cover liquid chromatography data (with a multivariate
detector). Automating the model quality evaluation of the PARAFAC2 model enables both the inexperienced and
trained user to perform comprehensive and advanced analysis of chromatographic data with a minimum of manual
workQ2 . Copyright © 2013 John Wiley & Sons, Ltd.
Additional supporting information may be found in the online version of this article at the publisher’s web site.
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1. INTRODUCTION

Nowadays, the most widespread approach for chromatographic
data analysis is using the software provided by the manufacturer
of the instrument. However, it has been shown that the algo-
rithms implemented in many commercial packages can result
in suboptimal utilization of the information in the data, compared
to what can be provided by curve resolution techniques such as
multivariate curve resolution or parallel factor analysis (PARAFAC
or PARAFAC2) [1,2]. A quite typical example is shown in FigureF1 1,
where the deconvolution procedure from commonly used manu-
facturer’s software has been applied to the data from 45 samples.
The peaks in the total ion chromatogram (TIC) (left side of the
figure) seem to be divided into two groups, indicating that the data
represent two different chemical compounds. If the individual mass
traces (not shown) are inspected, it is clearly seen that there are in-
deed two chemical compounds. The result from the manufacturer’s
software is shown in the middle plot in Figure 1. Several problems
can be observed with this result. First of all, the software only finds
a total of six peaks in all samples; this means that many the peaks
from the raw data are not described by this model. Furthermore,
several of the peaks contain a shoulder (circle in Figure 1), indicating
that the resolution of the two co-eluting peaks has not been
successful. A third problem is that none of the peaks in the model
have been separated from the baseline and that the level of the
included baseline is fluctuating. On the other hand, by using
PARAFAC2 on the dataset, these problems are seemingly solved.
The PARAFAC2 model is able to split the peak into three main

contributions arising from the two chemical compounds and
signal from the baseline (rightmost plot in Figure 1).

PARAFAC2 is a method able to handle many chromatographic
artifacts (e.g., baseline drift, overlapping, and elution time shifts)
[3]. It allows separating each source of variability in the data by
using the spectral information gathered for each elution time.
The resulting model provides three important sets of parameters:
an estimated elution time profile for each compound in each sam-
ple, an estimated pure spectrum for each compound, and relative
concentrations for each of these chemical compounds [4].

Previous publications [5–7] have shown that the use of
PARAFAC2 enables a comprehensive analysis of chromato-
graphic data. However, a common practical issue in all curve
resolution techniques is that the correct number of factors
must be determined in order to obtain chemically meaningful
profiles [8]. Unfortunately, it is not straightforward to determine
the proper number of factors to include. This may be one reason
why curve resolution methods are not usually seen in routine
chemical analysis. Therefore, an automated selection of the appro-
priate PARAFAC2 model would provide a significant improvement
in terms of allowing non-chemometrically skilled chemists to
take advantage of modern data analysis solutions.
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When a PARAFAC2 model is calculated, several statistical and
empirical diagnostics can be used to evaluate the reliability of
the model. Traditionally, only explained variance, residuals, and
mere observation of the obtained elution time and spectral
profiles have been used when determining the appropriate
number of factors in PARAFAC2. It has recently been suggested
to use core consistency, which is a diagnostic tool indicating
whether the model is over-fitted [9], in the evaluation of
PARAFAC2 models [10]. Nevertheless, there exist a number of
additional diagnostics that can be used to evaluate the obtained
PARAFAC2 model. In this manuscript, we suggest 102 different
diagnostics that all aim to describe some aspect of the quality
of a PARAFAC2 model.

From these initial statistical and empirical diagnostics, we
determine a classification model, which, in an automated way,
can find an appropriate number of factors to include in the
PARAFAC2 model. In order to obtain a good classification model,
we determine which of the initial descriptive quality criteria are
most important for the classification, and only those will be used
in the final classification model. The proposed method is tested
on four different gas chromatography–mass spectrometry
(GC–MS) datasets originating from different chromatographic
instruments and from different sample matrices (apples, wine,
aroma standards, and cheese).

The manuscript will be initiated by a section describing the
theory behind PARAFAC2 and a brief description of the diagnos-
tics developed for assessing PARAFAC2 model complexity. The
theory behind the classification will not be described in this
paper but can be found elsewhere in the literature [11,12]. The
description of the diagnostics will be followed by a section that
describes how the classification model is optimized and a valida-
tion of the final classification model.

Throughout this paper, the word compound refers to the
chemical compounds contained in a sample, while the words
factor and component refer to the outcomes of the model.

2. THEORY

PARAFAC was introduced simultaneously by Harshman [8] and
Carroll and Chang [13] (who named it canonical decomposition).
Harshman based his PARAFAC model on the idea of parallel
proportional profiles by Cattell [14]. The idea behind parallel pro-
portional profiles is that if the relative amounts of overlapping

phenomena are changing across samples, then it is possible to
resolve the unique patterns for each of these phenomena.
The PARAFAC solution is uniquely identified (up to scaling and

permutations) under mild conditions [15]. Essentially, PARAFAC
is unique as long as the chemical compounds do not have iden-
tical spectra or identical elution profiles. This indirectly implies
that a correctly specified PARAFAC model, applied to, for exam-
ple, GC–MS data, can provide estimates of the pure mass spectra,
concentration profiles, and pure elution time profiles when there
are no elution time shifts (as illustrated in Figure F22).
Chromatographic data often contain shift in the elution time

dimension, and PARAFAC is unable to handle shifted data
efficiently without the data being aligned prior to modeling with,
for example, correlation optimized warping as described by Skov
et al. [1], as only one common elution time profile is estimated
for each compound. Hence, PARAFAC assumes that the same
elution profile can model the compound in all samples. However,
it has been shown that PARAFAC2 can be used to solve the
problem with shifts in retention time [4,16]. In PARAFAC2, an
elution time profile is found for each compound in each sample
as illustrated in Figure 2. As for PARAFAC, the PARAFAC2
solutions are also unique. A thorough description of PARAFAC2
has been made by Bro et al. [4,15].
For both PARAFAC and PARAFAC2, a model with too many

factors will describe a variation that is not chemically meaning-
ful. Sometimes, one or a few extra components do not disturb
the model. For example, for PARAFAC, it has been shown that
in some cases, more than one model can be chemically mean-
ingful and provide estimates of the underlying patterns even
though the models have different numbers of factors [8]. This
implies that in some cases, there is no one optimal model but
rather a range of appropriate models. In our experience, the
same goes for PARAFAC2.
Figure F33 shows two examples of under-fitted models obtained

from the data presented in Figure 1. Both residuals and scaled elu-
tion profiles indicate that the models do not have enough factors
included. The residuals are, especially in the one-factor model, be-
having in a very systematic manner. This indicates that there is still
chemical information in the data, which is not explained by the
model. In the elution profiles, the under-fitting is indicated by
the modeled peak shapes, which suggest that two (or more) co-
eluting compounds are described by the same elution profile.
In Figure F44, a good model is shown to the left and an over-

fitted model to the right. Both models show how the residuals

Figure 1. Left: TIC of 45 elution profiles. The example shows the performance of, respectively, manufacturer’s software deconvolution algorithm
(middle) and PARAFAC2 (right) on the raw data (illustrated with the TIC, leftmost of the figure). The manufacturer’s software finds a total of six
compounds in all the 45 samples (illustrated with six elution profiles in the figure). The PARAFAC2 model finds three components in each
sample (illustrated with estimated elution profiles to the right): one of these describes baseline (gray) and two describe two different chemical
compounds (orange and purple).
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become smaller and more unsystematic when a sufficient
number of factors are included. The over-fitted model, in this
example, is characterized by having low core consistency (below
zero) as well as an increase in the proportion of negative values
in the obtained mass spectra, compared to the model with one
less factor. Also, the number of iterations, which has increased
considerably, compared to the model with one less factor,
indirectly indicates that this model is over-fitted.
One disadvantage in the aforementioned evaluation of

obtained models is that all of the diagnostics are subjective,
and such evaluations will inevitably be biased by different
personal opinions on which of the diagnostics one thinks is more
important in the evaluation. Another disadvantage is that the
evaluation is a time-consuming task. To counter these problems,
an automated quality control is proposed by investigating 34
diagnostics (see supplementary material), as descriptors for
quality of the PARAFAC2 model. All the diagnostics are calcu-
lated on models where the problem with sign indeterminacy
has been solved with the method proposed by Bro et al. [17].
For each of the 34 diagnostics, also the difference (“diff”)

between the diagnostic value of the present model and the
model with one factor less was included (diagnostics #35–68).
This approach was inspired by the DIFFIT approach described
by Timmerman and Kiers [18]. The diff value for a model with
k factors is defined as the value at k factors minus the value
at k� 1 factors. Also, the relative change is determined for all
34 diagnostics (diagnostics #69–102). The relative change is
defined as the diff divided by the original value. This gives
a total of 102 diagnostics.

3. MATERIALS AND METHODS

3.1. Datasets

A total of four different GC–MS datasets have been included in
this study:

– analysis of apples (apple juice analyzed with headspace–GC–
MS (HS–GC–MS) using aQ3 Hewlett Packard G1800A GC/MS

system. More details can be found in the publication by
Amigo et al. [6]),

– analysis of wine (HS–GC–MS analysis carried out on an HP 6890
GC coupled with an Agilent 5973 Mass Selective Detector.
More details can be found in the publication by Ballabio et al.
[19]),

– analysis of standards with different additions of aroma com-
pounds [1] (HS–GC–MS analysis carried out on a Hewlett-
Packard G1800A GC–MS system),

– analysis of cheese derivatized with methoxamine (20mg/mL
in pyridine) followed by derivatization with N-methyl-N-
(trimethylsilyl) trifluoroacetamide as described by Kanani
et al. [20]. The derivatized cheeses were analyzed using an
Agilent technologies 7890A GC system coupled to an Agilent
technologies 5975C inert XL MSD with Triple-Axis detector.

As curve resolution techniques work in small and regional
intervals, the four datasets were divided into intervals with an
estimated maximum of five compounds in each interval. The
TICs from the four datasets are shown in Figure F55, with blowups
showing examples of these intervals. In total, 155 intervals were
created. PARAFAC2 models with one to seven factors were
calculated for each of these intervals, and the diagnostics
described in the supplementary material were determined for
each of these 1085 models. By working on baseline-separated
intervals, the problems are typically much easier to analyze,
and more unambiguous results are obtained. PARAFAC2 models
were calculated without any constraints (such as non-negativity)
as these constraints might disguise indications of over-fit.

The ‘correct’ number of factors for each model was determined
by having a skilled GC–MSuser evaluating themodels by assessing
not only the core consistencies, number of iteration used, residuals,
and obtained elution and spectral profile (as described in the pre-
ceding section) but also the chemical information in the raw data.

The classification model was constructed with partial least
squares discriminant analysis (PLS-DA) as follows: The 155 inter-
vals were randomly divided into a calibration (75 intervals) and a
validation (80 intervals) set. The PLS-DA model was optimized,

Figure 2. Illustration of the differences between PARAFAC and PARAFAC2. In PARAFAC, one common elution profile is used to describe each
compound in all samples, whereas in PARAFAC2, each compound in each sample is modeled with a distinct elution profile. Figure adapted with
permission from Amigo et al. [3]. Copyright © 2010 American Chemical Society.
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and the number of variables (diagnostics) included reduced by
using the calibration set with 75 intervals and the 102 diagnos-
tics, and subsequently tested using the test set containing the
rest of the intervals and the remaining diagnostics. Eleven of
the intervals were not modeled well by PARAFAC2. The reason
for that could be that two compounds were totally overlapping
(embedded peaks), the peak shapes were severely changed, or
that the spectra of different compounds were too similar. These
intervals were removed from the calibration set before any
variable selection was performed in order for them not to
influence the selection.

3.2. Software

All algorithms and models have been developed using MATLAB
R2012a (Mathworks, Inc., Natick, MA, USA). PLS_Toolbox
(Eigenvector Research, Inc., Wenatchee, WA, USA) has been used
for principal component analysis and PLS-DA models. PARAFAC2
models have been calculated using the algorithm available from
www.models.life.ku.dk (April 2013).

4. RESULTS AND DISCUSSION

By visual inspection of the raw diagnostics, it became obvious
that most of them were following an overall pattern. In Figure F66,
the values of core consistency (diagnostic 20), the number of
iterations (diagnostic 2), and the relation between the absolute
area and the area of the spectral profile (diagnostic 10) are
shown. The values are obtained from the PARAFAC2 models
illustrated in Figures 3 and 4.
Small changes in the diagnostic value are observed as more

and more factors are included until the model becomes over-
fitted. At this point, there is a significant change after which
the diagnostic value only changes slowly again. The relative
difference obtained from the first over-fitted model describes
this jump in the raw diagnostic values, as illustrated in Figure 6.
Therefore, the first over-fitted model will be distinguishable from
the ones with fewer components. This approach is similar to
what was described by Hoggard and Synovec [21] in their paper
concerning automated determination of the number of factors
to include in PARAFAC models.

Figure 3. PARAFAC2 models with too few factors applied to the data presented in Figure 1. Left, one factor; core consistency, 100; iterations, 2. Right,
two factors; core consistency, 99; iterations, 2. Core consistency and iterations are used in the evaluation of the models. The colors in the figure refer to
the different components; for example, purple in elution and spectral profile refers to the same component. The thick red lines illustrate elution profiles
referred to in the text.
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In order to determine which of the 102 selected diagnostics
were useful in classification of the first over-fitted model, variable
selection was conducted. By using a combination of three
different variable selection techniques, the most important
diagnostics were selected. The variable selection techniques
used wereQ4 VIP (which indicates the importance of a variable for
the model), iPLS (which identifies a few number of variables that
give better predictions than the other), and genetic algorithms
(which selects the variable combination that gives the best
model). All of these techniques are thoroughly described by
Andersen and Bro [22].
The following seven diagnostics represent a good compromise

between having a good classification power without too many
variables (the numbers in parentheses refer to the table in the
supplementary material, which includes all 102 diagnostics):

– core consistency (#20),
– change in the negative area in the elution profile (#43),
– change in negative correlation between spectra (#53),
– logarithm of the number of iterations (#3),
– the positive correlation between spectra (#18),

– the relative change in how systematic the residuals are
(indicated with Durbin Watson) (#97),

– the relative change in the correlation between the TIC from
raw data and the TIC from the obtained model (#94).

The specificity (0.97 for over-fit and 0.95 for not over-fit)
obtained with a model including these seven diagnostics is very
similar to the model including five additional diagnostics.

None of the seven final diagnostics could be removed without
a significant loss of classification power (decrease in specificity
close to 10%).

The regression vector obtained in the PLS-DA model (Figure F77)
indicated that the core consistency, changes in the negative area
in the elution profile, and changes in negative correlation between
spectra are negatively correlated to over-fit. On the other hand, the
following diagnostics were positively correlated with the first over-
fitted model: the logarithm of the number of iterations, the
positive correlation between spectra, the relative change in how
systematic the residuals are (indicated with Durbin Watson), and
the relative change in the correlation between the TIC from raw
data and the reconstructed TIC from the obtained model.

Figure 4. Best model: core consistency, 97; iterations, 30. Over-fitted model: core consistency, <0; iterations, 383. Core consistency and iterations are
used in the evaluation of the models. The colors in the figure refer to the different components; for example, purple in elution and spectral profile refers
to the same component.
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The PLS-DA model based on these seven diagnostics was used
to classify the models in the test set (a total of 80 intervals). Most
of these intervals were correctly classified according to the
manual evaluation. Furthermore, it was found that the majority
of the cases where there was incongruence between manual and
automated evaluation were either models that were misclassified
by the manual evaluation or cases where PARAFAC2 was simply
unable to describe the data in an appropriate way.

As an example of the wide application range of the presented
method, the elution profiles from three over-fitted models, with
very different characteristics, are shown at the right of FigureF8 8.
These were all correctly classified as the first over-fitted models,
leading to the models with one factor less, shown at the left of
the figure, to be determined as being appropriate models. The
diversity in these models indicates that the classification is
performing well for many different types of GC–MS data.

In Table T1I, the cases of incongruence between manual and
automated evaluation are listed. These cases can be divided into
three categories; misclassified (eight models), intervals not well
described by any PARAFAC2 model (10 models), and models
where both the results of the manual and automated classifica-
tions can be assessed as correct (nine models). In the table, it
can be seen which of these categories the individual models falls
into. In the following, a thorough inspection of the three types
will be given.

4.1. Intervals not well described by PARAFAC2

These are cases where it is not possible to obtain a model
that looks meaningful from a chemical point of view. An
example of this is interval 2 from the cheese data (Figure F99).
In the model with two factors (left side), the two peaks have

Figure 5. Overview of the raw data; the blowups show examples of different intervals.

Figure 6. Development of a typical diagnostic with increasing number of factors included. Illustrated here are three of the 34 diagnostics listed in the
supplementary material. The diagnostics are obtained from the PARAFAC2 models illustrated in Figures 3 and 4. Red triangles: under-fitted models.
Green stars: best model. Blue squares: over-fitted model.

L. G. Johnsen et al.

wileyonlinelibrary.com/journal/cem Copyright © 2013 John Wiley & Sons, Ltd. J. Chemometrics (2013)

6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130



not been separated. Furthermore, the factor that describes
the baseline contains a number of small peaks. This indicates
that this component is actually describing baseline plus at
least one chemical compound. These observations indicate

that additional factors should be included. In the model with
three factors (right side), there is still one elution profile that
describes both of the peaks. Additionally, the spectra from
component 2 (green profiles) are exclusively negative, which
indicate that the model is over-fitted. In models with more
than three factors included, the signs of over-fit become even
more obvious. When inspecting the mass spectra of the two
peaks (not shown), it can be seen that the two compounds
have many fragments in common but that they also have
some differences. In this case, we must therefore conclude
that this interval cannot be well described with PARAFAC2.
Imposing non-negativity in the estimated spectral profile
and concentrations did not improve the models. Note that
traditional chromatographic software would also not be able
to provide meaningful results of this interval.

It might be possible to identify infeasible intervals by
including the correct diagnostics. The development of such a
method is beyond the scope of this paper but should be investi-
gated further in future work.

Figure 7. Regression vector for the PLS-DA model.

Figure 8. Right: examples of models correctly classified as being the first over-fitted model by the PLS-DA model. Left: the models with one factor less,
concluded to be the appropriate models. The colors in the figure refer to the different components.
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4.2. Intervals offering several solutions

In cases where the classification might be correct even though
it differs from the manual classification, there exists more than
one number of factors for which it could be argued that the
model is appropriate. An example of this could be interval
24 from the apple data. In FigureF10 10, the PARAFAC2 models
with two and three factors, respectively, are illustrated. In the
model with two factors (left side), there is still a small amount
of systematic behavior in the residuals, indicating that an addi-
tional factor should be included in the model. However, if an
additional factor is included (right side), there is an increase
in negative values in the spectral profile, indicating that too
many factors have been included. By constraining the model
with non-negativity in spectral profiles and concentration, the
model with three factors no longer has indications of being
over-fitted. This indicates that the model with three factors
indeed is not over-fitted as also suggested by the classification
model. A more thorough investigation was conducted by cal-
culating new models on the same interval with different
starting points. These new models indicated that the obtained
model is representing a local minimum.

Another example of a model with seemingly conflicting results
is from the cheese dataset, interval 22. Upon thorough inspec-
tion of the model and the raw data, there are indications that
this three-factor model may have been correctly classified as
not over-fitted and that it is the initial manual assessment that
is wrong. The spectral profile obtained by the model (middle
plot, FigureF11 11) shows that there are some masses that separate

the two peaks. If these masses are inspected in the raw data
(leftmost plot in Figure 11), it can be seen that there actually
seems to be a shift, indicating that two chemical compounds
are eluting. However, the two compounds are poorly resolved
(as also shown by the modeled elution time profiles; leftmost
plot in Figure 11), and this might be the reason that
PARAFAC2 has some difficulties in modeling them. It is inter-
esting that apparently, the results of a properly trained expert
system can outperform a skilled analyst.

4.3. Misclassified

The incorrectly predicted models can be divided into two
sub-categories: misclassified as not over-fitted and misclassified
as over-fitted. However, there are no models that fall into the
first category, indicating that the actual specificity of the classi-
fication model is very high. In the second category, there are
eight models.
In the cheese dataset, interval 5, there is a small amount of

tailing, which is not caught in the model identified as the correct
one. However, neither the obtained spectral profile nor the con-
centration profiles (not shown) are affected by this. From all
practical aspects, this will not affect any further interpretation
of data. In the apple dataset, interval 13, a small peak is missing
in the model identified as being appropriate. However, this peak
is of such small magnitude that it does not affect the obtained
concentration profiles and mass spectra, which are very similar
in the two models. The same situation is observed for cheese,

Table I. Cases of incongruence between manual and automated evaluation from the test set with a total of 80 intervals

Dataset Interval # Factors Comments

Predicted as not over-fit
by the automated approach

Apple 19 3 Also appropriate
22 4 PARAFAC2 inappropriate
24 3 Also appropriate

Cheese 2 2 PARAFAC2 inappropriate
22 3 Also appropriate
38 3 PARAFAC2 inappropriate
31 3 Also appropriate
46 3 Also appropriate

Aroma 1 2 Also appropriate
5 2 PARAFAC2 inappropriate
7 2 Also appropriate
8 2 Also appropriate

11 3 PARAFAC2 inappropriate
Predicted as over-fit by the
automated approach as over-fit

Apple 1 5 Misclassified
13 3 Misclassified
22 4–5 PARAFAC2 inappropriate

Cheese 5 4 Misclassified
10 3 Misclassified
12 4–6 Misclassified
14 4 PARAFAC2 inappropriate
16 2–3 PARAFAC2 inappropriate
20 3 Misclassified
58 3 PARAFAC2 inappropriate
65 2 Misclassified

Wine 30 4 Misclassified
38 3 Also appropriate
41 2–4 PARAFAC2 inappropriate
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interval 20. In this case, the missing peak has a higher magni-
tude, but nevertheless, the compounds are modeled meaning-
fully and very similar to those in the appropriate model
(illustrated in FigureF12 12). Furthermore, both spectra and concen-
tration profiles (not shown) of the main peak (which is present in
both models) are practically unaffected. This means that further
interpretation will not be affected besides the fact that a
compound is missed.
The misclassifications of the remaining five intervals (apple,

interval 1; cheese, intervals 10, 12, and 65; wine, interval 30) result
in models that deviate more severely from the appropriate model.
Summing up, these observations actually show that over 90%

of the models that are identified as correct with the suggested
approach are describing real underlying chemical information
(assuming that such a model can be found using PARAFAC2).
This is to our best belief a significant improvement compared

to the alternatives offered by the manufacturer’s software.
We have shown that the suggested automated approach can
indeed be used to identify models that are describing the
underlying chemistry. It may be interesting to compare auto-
matically determined PARAFAC2 models to solutions obtained
with alternative methods for quantification of overlapping sig-
nals in order to determine which methods are most suitable
for different situations.

Additionally, it should be mentioned that the additional
computation time needed for calculating the seven diagnostics
included in the final PLS-DA model is insignificant compared to
the time needed for calculation of the PARAFAC2 models. The
step in the automated procedure that is most time consuming
is the correction of the sign indeterminacies, and also, this step
is considerably less time consuming than the calculation of
the PARAFAC2 models.

Figure 9. Interval 2 from the cheese data modeled with two and three factors, respectively. The model with two factors seems to have too few factors,
whereas the model with three seems to have too many factors included. The colors in the figure refer to the different components; for example, blue in
elution and spectral profile refers to the same component.
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Figure 10. Interval 24 from the apple data modeled with two and three factors, respectively. The model with two factors seems to have too few factors
because there is still some systematic behavior in the residuals, but otherwise, it seems like an appropriate model. The model with three factors seems
to have too many factors included, because of the increase in negative values in the spectra profile; otherwise, it is a nice model. The colors in the figure
refer to the different components; for example, blue in elution and spectral profile refers to the same component.

Figure 11. Illustration of the elution time profiles (left) and mass spectral profiles (middle) obtained from cheese, interval 22, modeled with three
factors. The rightmost plot shows the mass traces of the masses, which separates the two peaks (indicated with circles in the middle plot). The colors
in the figure refer to the different components; for example, blue in elution and spectral profile refers to the same component.
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5. CONCLUSION

By the usage of different variable selection techniques, we have
found that a PLS-DA model based on seven quality criteria can
be used to automate selection of the number of components
in PARAFAC2. The seven quality criteria that turned out to be
most important for the classification are as follows:

(1) core consistency,
(2) change in the negative area in the elution profile,
(3) change in negative correlation between spectra,
(4) logarithm to the number of iterations,
(5) the positive correlation between spectra,
(6) the relative change in how systematic the residuals are

(indicated with Durbin Watson),
(7) the relative change in the correlation between the TIC from

raw data and the TIC from the obtained model.

The obtained PLS-DA model was evaluated on an inde-
pendent test set. This validation showed that over 90% of
the models that were determined to be appropriate by the
automated procedure describe the underlying chemistry.
This makes the approach very useful for handling huge
amounts of data, without the need of a skilled chemometrician
to manually evaluate every model. It has been shown that the
developed method can handle very different kinds of GC–MS
data, and optimization should therefore only be necessary
if the model is applied on other types of data (e.g., liquid
chromatography–MS).
AMATLAB routine has beenwritten, which calculates PARAFAC2

models and finds valid models using the approach described in
this paper. The function, which is called AutoChrome, is available
at www.models.life.ku.dk (April 2013). If the prediction of the
number of compounds is combined with additional tools [2], iden-
tification can be accomplished using the open source software
OpenChrom [21] combined with the NIST mass spectral library.
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